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Abstract—Status code mappings reveal state shifts of a pro-
gram, mapping one status code to another. Due to careless
programming or the lack of the system-wide knowledge of a
whole program, developers can make incorrect mappings. Such
errors are widely spread across modern software, some of which
have even become critical vulnerabilities. Unfortunately, existing
solutions merely focus on single status code values, while never
considering the relationships, that is, mappings, among them.
Therefore, it is imperative to propose an effective method to
detect status code mapping errors.

In this paper, we propose TRANSCODE to detect potential
status code mapping errors. It firstly conducts value flow analysis
to efficiently and precisely collect candidate status code values,
that is, the integer values, which are checked by following
conditional comparisons. Then, it aggregates the correlated
status codes according to whether they are propagated with the
same variable. Finally, TRANSCODE extracts mappings based
on control dependencies and reports the mapping error if one
status code is mapped to two others of the same kind. We have
implemented TRANSCODE as a prototype system, and evaluated
it with 5 real-world software projects, each of which possesses
in the order of a million lines of code. The experimental results
show that TRANSCODE is capable of handling large-scale systems
in both a precise and efficient manner. Furthermore, it has
discovered 59 new errors in the tested projects, among which 13
have been fixed by the community. We also deploy TRANSCODE
in WeChat, a widely-used instant messaging service, and have
succeeded in finding real mapping errors in the industrial
settings.

I. INTRODUCTION

Many large-scale systems use status codes to represent

program states. There are mappings among status codes since a

system may describe the same program state at different levels

of abstraction (e.g., disk failure v.s. IO error). These mappings

are, unfortunately, error-prone. As an example, CVE-2010-
04081 records a vulnerability of Apache Httpd v2.2 that is

caused by a status code mapping error. In Figure 1, the variable

status receives status codes indicating the result of handling

a client request. In line 4, a different code HTTP INTERNAL

* Yikun Hu and Peisen Yao are the corresponding authors.
1https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-0408

1 int ap_proxy_ajp_request(){
2 status = ap_get_brigade();
3 if (status != APR_SUCCESS){
4 return HTTP_INTERNAL;
5 }
6 . . .
7 }

(a)

1 int ap_xml_parse_input(){
2 status = ap_get_brigade();
3 if (status != APR_SUCCESS) {
4 result = HTTP_BAD_REQUEST;
5 return result;
6 }
7 }

(b)

Fig. 1. (a) CVE-2010-0408: A status mapping error found in Apache Httpd
v2.2 later causes a DoS vulnerability. (b) A correct error handling example
that returns the correct status code. The status code alias names have been
simplified.

is returned to the caller (status code mapping) for any status

codes that are not APR SUCCESS. Such mappings make the

server to keep re-processing incorrect requests2. As a conse-

quence, a malicious client could launch a denial-of-service

attack against a server. Worse still, these mapping errors

are hard-to-be-detected since they seldom cause immediate

symptoms (e.g., program crashes). The imperative of this

research is to propose a practical solution to detect such status

code mapping errors.
To achieve this goal, we have to address two challenges.

The first challenge is how to efficiently and precisely track

the propagation status codes (C1). Simply tracking the prop-

agation of status codes via data-flow analysis inevitably in-

troduces false results because some infeasible paths disallow

some status codes to pass through. However, employing path-

sensitive analysis would worsen the scalability issue because,

for every path, we need to check whether each status code

can pass through by constraint solving. Owing to the presence

of massive status codes in large-scale systems, it would be

computationally expensive to solve feasibility queries for each

path per status code. For instance, even just 34 status codes in

the Linux kernel will touch all file systems and storage device

drivers [1], burdening solvers with a high cost in feasibility

validation.

2https://tools.ietf.org/html/rfc7231#section-6.6
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The second challenge is how to automatically infer the

functionality-correlated status codes (C2). Mappings originate

from program state shifting, represented by status codes,

reflecting the correlation among them. Therefore, such corre-

lation is essential knowledge for determining mapping errors.

Unfortunately, such knowledge is not explicitly available in a

program. In particular, as a convention, the developer defines

functionality-correlated status codes (e.g., HTTP response

codes) in various data structures, where many are undocu-

mented and might even be distributed across random source

files.
There are also numerous efforts on differentiating error sta-

tus codes and non-error codes [1–7] that are not applicable for

reasoning correlated status codes. In particular, some programs

perform checks in the form of if(err > 0) that coarsely take

positive numbers as errors and vice versa. However, existing

studies discard the correlation of status codes, e.g., HTTP

response codes are only used to making server responses and

consist of both errors and non-errors.
This paper proposes TRANSCODE that automatically detects

status code mapping errors via inconsistencies in mappings. It

firstly conducts a path-sensitive value flow analysis to collect

candidate values of state codes. A domain inference algorithm

is then applied according to whether one function transitively

receives status codes from another. After that, TRANSCODE

extracts mappings on control flow graphs and then reinforces

them with domain information. At last, mapping errors are

reported if one status code is inconsistently mapped to two

other correlated relations.
Specifically, to tackle the challenge of the efficient and

precise status code value collection (C1), we present an

interpolation-guided algorithm [8, 9] that mitigates the costs of

frequently invoking solvers. The insight of the approach is that

some common infeasible paths could filter many invalid status

codes. To tackle the challenge of reasoning correlations of

status codes (C2), we propose an approach that automatically

infers functionality-correlated status codes from value flows

of status codes. We base it on a convention that each function

outputs status codes of correlated functionalities only.
We evaluated TRANSCODE on five real-world software

projects, each of which has 0.38-4.81 million lines of code.

The experimental results show that TRANSCODE can precisely

and efficiently obtain status code values during propagation

and infer their functionality correlation. For each project, the

above analysis is finished within half an hour. Moreover, it

finds 59 new errors in the tested projects, 13 of which have

been fixed by the developers.
In summary, the paper makes the following contributions:

• We introduce TRANSCODE, a novel approach for detect-

ing mapping errors occurring among status codes. To the

best of our knowledge, this work is the first research effort

focusing on status code mappings.

• We implement the prototype of TRANSCODE, which is

capable of handling real-world, large-scale applications

precisely as well as efficiently.

• We conduct the experiments on five real-world software

projects and discovered 59 new errors, among which 13
have been fixed by the community.

II. TRANSCODE IN A NUTSHELL

In this section, we first use an example to illustrate the

incorrect status code mapping problem. We then present an

overview of our approach to resolving this problem.
Figure 2(a) is a code snippet that contains a mapping error.

Lines 1-8 are the status codes defined via two types of data

structures. In function f2, two mappings are present, giving

two branches that go to different return statements. In particu-

lar, upon a status code DECLINED returned by function f0,

a new status code HTTP_BAD_REQUEST is returned, com-

posing a mapping from DECLINED to HTTP_BAD_REQUEST
on Lines 18-19. Similarly, a mapping from DECLINED to

HTTP_OK can be found on Lines 20-21. However, these two

mappings de facto make an error because the same status

code OK is mapped to two different HTTP response codes.

Hence, mapping errors like this and the one in Section I

not only lead to error mishandling but also compromise the

program.
How to detect the above mapping error is a non-trivial

task. It first requires precisely revealing the propagation of

status codes. For instance, the value check at Line 13 decides

whether the variable rv will continue to propagate some

status code values. A second imperative is to determine which

status codes represent the same sort of functionality because

the inconsistencies only occur when two destination status

codes are functionality-correlated. For example, HTTP_OK and

HTTP_BAD_REQUEST are highly-correlated since they are all

HTTP response codes. The challenging part of this goal is

how to automatically infer such correlations without any prior

knowledge because they are mostly project-specific heuristics.

These heuristics for grouping status codes include naming,

data structures, and values that often vary widely from one

code base to another. Needless to say that providing the

knowledge requires expertise and tedious examination of the

source code.
To conquer the beasts, we propose a systematic approach,

namely TRANSCODE, of which a workflow is given in Fig-

ure 3. We begin with collecting the status code returned each

function as the initial summaries via a path-sensitive value-

flow analysis (§IV-A). These summaries are further examined

for inferring the underlying correlations of status codes, that is,

whether two status codes are of the same kind (§IV-B). At last,

aided with the correlations, we can demystify mapping errors

by exposing the inconsistencies between status codes map-

pings where destination status codes are correlated (§IV-C).
As a running example, Figure 2(b) exemplifies how

our value-flow analysis tracks the propagation of sta-

tus codes. Specifically, function f0 inherits the sta-

tus codes from function f1, thus resulting in a sum-

mary {OK, DECLINED, DONE, SUSPENDED}. The summary is

then reduced to {OK, DECLINED}, because neither DONE
nor SUSPENDED can become a return value, as they are

obviously filtered by the condition rv > DONE. To further
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Fig. 2. A motivation example.

Fig. 3. System Overview of TRANSCODE

group correlated status codes, we unify the overlapping sets

of status codes returned by some functions, such that two

groups of status codes {OK, DECLINED, DONE, SUSPENDED}
and {HTTP_OK, HTTP_BAD_REQUEST} are established and

clearly distinguishable from one another. As revealed by

control-flow paths at Lines 18-21, two status code mappings

are identified as well (Figure 2(c)). Thus, the two mappings

compose an inconsistency, since they both occur between

two groups of status codes. That is, the inconsistency of

two mappings, DECLINED �→ HTTP_OK and DECLINED �→
HTTP_BAD_REQUEST, reveals the culprit of a mapping error.

III. PROBLEM FORMULATION

In this section, we first present the fundamental definitions

and terminologies, and then formulate the mapping error

detection problem.

A. Preliminaries
We begin with the formal definitions of status codes and

their domains:

Definition III.1 (Status Code). A status code c is a constant

integer c ∈ Z served as program state indicators.

Definition III.2 (Status Code Domain). A status codes domain

is a set of status codes C = {c1, c2, . . . , cn}, describing the

states of a functionality-independent software feature3. For

simplicity, we abbreviate “status code domain” to “domain”

for short in the rest of the paper.

Example III.1. Consider the program in Figure 2.

HTTP_BAD_REQUEST is a status code from HTTP domain D,

representing a type of HTTP response errors. The domain is

also used to differentiate status codes with the same value but

different meanings.

A status code mapping occurs when a status code stops

propagating, and in the same function, a new status code starts

to propagate. Formally, a mapping instance can be defined in

terms of status codes and domains:

Definition III.3 (Status Code Mapping). The mapping relation

is formalized as a partial function [11] in mathematics between

a domain C and a co-domain D, denoted by Γ : C ⇀ D, such

that there exists at least one status code c ∈ C and another

status code d ∈ D satisfying Γ(c) = d. In the remaining

sections, we use an alternative representation to explicitly mark

a mapping with its corresponding domain and co-domain:

(c, C) �→ (d,D)45.

Example III.2. As exemplified in Figure 2, there is a

mapping (DECLINED, C) �→ (HTTP_BAD_REQUEST,D) at

Lines 18-19, where DECLINED is a status code received from

a call site to f1 at Line 18.

B. Problem Statement
Mapping errors originate from inconsistencies. As illus-

trated in the former section, one status code might be mapped

3It is a formalized definition originated from Apple [10].
4The mapping of a mapping might be inferred across many functions but

not specific to local facts within one function.
5The pairing representation always references a unique status code in a

program, regardless of its value equivalence over other status code values.
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into two different status codes of the same domain. In this

paper, we aim to automatically detect such inconsistencies.

Formally, we define the mapping error as follows.

Definition III.4 (Mapping Error). A mapping error occurs

when multivalued mappings are detected, making the mapping

relation no longer a partial function. Formally, there exist

(c, C) �→ (d,D), and (c, C) �→ (d′,D), where d �= d′.

Example III.3. At Lines 17-20 in Figure 2, the two in-

consistent mappings are (DECLINED, C) �→ (HTTP_OK,D)
and (DECLINED, C) �→ (HTTP_BAD_REQUEST,D), because

they are across two consistent domains C and D, but the

destination status codes diverge.

Detecting mapping errors raises two major challenging

issues. The first is how to efficiently and precisely track the

propagation of status codes. To validate each propagation, we

have to consider its path-feasibility. Assuming a path condition

is φ and a return variable is rv, there would be an excessive

amount of path-feasibility queries subject to each status code

value of the form φ∧(rv = c1), . . . , φ∧(rv = cn). Compared

to solving the path condition φ alone, those massive queries

for each status code can overload the solvers, leading to a

significant scalability problem.
The second issue in detecting mapping errors is automat-

ically inferring the domain C of status codes. Providing that

status code definitions are capricious in large software systems,

a simple pattern-based code scan will bring false positives

or false negatives and requires expertise to adapt to broader

software systems.
Based on the discussion above, our problem in terms of

mapping error detection can be summarized as follows:

Given a program P , efficiently and precisely track the

propagation of status codes and infer the underlying

domains of each status code.

IV. APPROACH

This section presents a value flow analysis for status code

collection, domain inference from collected status codes, and

the mapping error detection process.

A. Value-Flow Analysis For Status Code Collection
Path-sensitive Value Flow Analysis. The first stage of

TRANSCODE is a value flow analysis for analyzing the status

code values returned by each function, which is the key

input of domain inference (§IV-B). Specifically, TRANSCODE

selectively searches from the definition of constant integer

values to the return statements that they flow to. Similar to

previous program analysis [12, 13], our design adopts bottom-

up summary-based techniques to boost the performance of the

inter-procedural analysis.
At a high level, the value flow analysis summarizes intra-

procedural sub-paths to build the full paths from sources to

sinks, where a source is the origin of a status code and a sink is

the end of its propagation. More concretely, our analysis tracks

and composes the following sub-paths, where � operator

denotes if some value v1 can reach to another value v2 via

assignments.

• c� return v: A path from a constant integer c to return

value.

• c � call f(. . . , arg, . . .): A path from a constant inte-

ger c to a callee’s argument arg.

• arg � return v: A path from a function argument to

return value.

• v1 ← call f(. . .) � return v2: A path from a callee’s

return values to a return value of the current function.

During the analysis, if a composite path of the above sub-

paths is c � return v, the status code c is added to the

summary of all status codes returned by function f , denoted

as Ret(f). Moreover, by leveraging the function summary,

a caller function can inherit the callee’s results if there is a

path v1 ← call g(. . .) � return v2. Formally, two inference

rules collecting status codes of function f are given:

�1 : c� �2 : return v

c ∈ Ret(f)
(1)

�1 : v1 ← call g(. . .)� �2 : return v2

Ret(g) ⊆ Ret(f)
(2)

To obtain a more precise result from the above rules, we

can filter infeasible propagation via a path-sensitive analysis.

We follow the previous work on a compositional and efficient

encoding to collect each return statement’s path condition [12].

Specifically, assume the path condition is φ and there exists

a set of candidate status codes c1, c2, . . . , cn to be verified.

Then, we construct and solve feasibility queries in the form

of φ∧(rv = c1), φ∧(rv = c2), . . . , φ∧(rv = cn), respectively.

If one query φ ∧ rv = ci is UNSAT, then we can exclude ci
from Ret(f).

Example IV.1. Consider the function f0 in Figure 2. After

running a value flow analysis, we can acquire the initial sum-

mary of f0: Ret(f0) = {OK, DECLINED, DONE, SUSPENDED}.

We then construct path-feasibility queries for each status

code and solve φ ∧ (rv = OK), φ ∧ (rv = DECLINED),
φ ∧ (rv = DONE), and φ ∧ (rv = SUSPENDED) separately.

The finalized summary of f0 is:

Ret(f0) = {OK, DECLINED}.
Interpolation-guided Refinement. Recall that to compute

the summary for a function f , we need to solve instances of

path-feasibility queries of the form φ ∧ (rv = ci). However,

if the number of functions and the number of status codes are

both large, the path-sensitive value flow analysis can result in

a huge number of SMT solver calls, leading to performance

issues.
To potentially reduce the number of solver calls, we present

an interpolation-based optimization [8, 9]. The key insight of

our optimization is that the facts disallowing some status code

values to be propagated can be used to determine the feasibility

of other status codes, thus enabling us to potentially prune

unnecessary calls to solvers.

832

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on January 25,2022 at 07:59:34 UTC from IEEE Xplore.  Restrictions apply. 



Algorithm 1: Interpolation-guided Refinement

Input: The path condition φ and a set of

constraints S = {rv = c1, . . . , rv = cn}
Output: Decide the satisfiability of each

φ ∧ rv = ci (1 ≤ i ≤ n)
1 foreach ψi ∈ S do
2 if φ ∧ ψi is UNSAT then
3 I ← GetInterpolant(φ, ψi);
4 foreach ψj : (rv = cj) ∈ S do
5 // no solver required
6 if I[cj/rv] = false then
7 eliminate ψj from S;

8 else
9 // ci will be added to Ret(f)

10 Mark φ ∧ ψi as satisfiable;

Definition IV.1. An interpolant for a pair of inconsis-

tent formulas (A,B) (i.e., A ∧ B = UNSAT) is a for-

mula I satisfying (1) A ⇒ I (2) I ∧ B = UNSAT
(3) V ars(I) = V ars(A)∩V ars(B), where V ars(P ) denotes

the variables referenced by predicate P .
Note that, for a pair of inconsistent first-order formulas A

and B, there must exist at least one interpolant [14]. For

example, a < 1 ∧ a = 4 is UNSAT, and an interpolant for

(a < 1, a = 4) can be a < 3.

In our context, the constraints are of the form φ ∧ rv = ci,
where φ is the path condition and ci is a constant status code.

Consequently, if φ ∧ rv = ci is UNSAT, an interpolant I
of (φ, rv = ci) must exist, and it only references rv, i.e.,

V ars(I) = {rv}.
Thus, the key idea underlying our approach is to use

the interpolant I of (φ, rv = ci) to potentially prune the

satisfiability queries of other constraints φ ∧ rv = cj (i �= j).

In particular, if I ∧ rv = cj is UNSAT, then φ∧ rv = cj must

also be UNSAT, because φ ⇒ I . Notably, since I references

only one variable rv, it is unnecessary to invoke a solver to

determine the satisfiability of I[cj/rv].
Based on the above idea, we apply Algorithm 1 to optimize

the computation of summary Ret(f). For instance, assume an

interpolant rv < ci is available upon an unsatisfiable formula

φ∧rv = ci, which provides a detailed explanation of why the

predicate rv = ci conflicts with the path condition (Line 3).

Other predicates might potentially conflict with the interpolant

as well, indicating their unsatisfiability of not invoking a solver

(Lines 4-7). Note that an interpolant might not always be the

most precise. Still, since the interpolant involves the return

variable rv only, it would be showing great potential to be

precise and conflict with other queried formulas.

Example IV.2. When checking the path-feasibility of sta-

tus code DONE, the solver answers that φ ∧ (rv = DONE)
is UNSAT At the same time, an interpolant I = (rv ≤

DONE) recorded during solving serves as a precondition sub-

ject to rv. This interpolant can then be applied to filter

other infeasible status code predicates, for example, (rv =
SUSPENDED). A conflict between the interpolant and the predi-

cate is observed in I[SUSPENDED/rv]. Therefore, we conclude

that SUSPENDED is pruned without a solver: Ret(f0) =
{OK, DECLINED}.

Remarks We also record status code naming from macros,

enumerable types, and various data structures in the pre-

processing stage at the source code level and feed it to the post-

processing stage (value flow analysis). Our analysis, therefore,

can distinguish all status codes even with the same value but

different names.

B. Status Code Domain Inference

From §IV-A, the returned status codes of each function is

collected. However, it remains to distinguish whether some

status codes belong to the same domain for mapping error

detection.
Domain-specific expertise may help define these domains

manually, yet it requires considerable effort and may cause

false results. The key reason is the existence of a massive

amount of status codes, and its declaration method varies

from projects favoring different programming conventions. For

instance, multiple domains of status codes are declared in the

header file httpd.h, and there are also status codes defined

in multiple files that compose the same domain. Besides,

these domains can be declared in various data structures

such as macros, global variables, enumerable types, and class

members, increasing the difficulty for developers to provide

such specifications.

Return Conventions of Status Codes. To automatically

infer the domains from the programs, we utilize an observation

about the return convention of status codes. Specifically, as

found in past research [1, 4], some implementation-specific

status codes are internally used at callee functions and will not

continue to propagate to the caller functions. In order words, a

function only returns correlated status codes within the same

domain.

Example IV.3. Figure 4 presents the propagation of status

codes for Figure 2. Function f0 takes status codes from f1
and continues to propagate them. Therefore, both functions f0
and f1 return status codes within the same domain.

Unification-based Domain Inference. By the observation,

we can infer each function’s domain by a unification-based

Algorithm 2. The key idea is that we unify all non-disjoint

sets of returned status codes for each function and obtain the

resulting disjoint sets as domains.

Example IV.4. Consider the domain inference of func-

tions f0, f1, f2. From §IV-A, we obtained the sets of status

codes for each function Ret(fi). By unifying all non-disjoint
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Algorithm 2: Domain Inference

Input: Returned status codes of each function Ret(fi)
Output: Sets of status code domains �

1 � = {A = Ret(f0),B = Ret(f1), . . . ,N = Ret(fn)};

2 foreach (I,J ) ∈ �×�, I �= J do
3 // pairwise set intersection
4 if I ∩ J �= ∅ then
5 I ← I ∪ J ;

6 eleminate J from �;

7 return �;

DomainsCall edges

: HTTP Status Codes

f1 f0 f2
OK
DECLINED
DONE
SUSPENDED

OK
DECLINED

HTTP_OK
HTTP_BAD_REQUEST

: Httpd Internal Status Codes

Fig. 4. Propagation of status codes in Figure 2. Status codes of func-
tions f1, f0 have no overlap of status codes of f2.

sets, we obtain domain facts as follows:

C = {OK, DONE, DECLINED, SUSPENDED}
D = {HTTP_OK, HTTP_BAD_REQUEST}.

The algorithm above mainly utilizes set intersections and

unions. However, previous program analyses based on set

operations have been proved with high time and space com-

plexity [15–17], giving the massive functions and status codes

in large-scale software systems. In consequence, pairwise set-

intersections among all sets of returned status codes might lead

to deficiencies.

Value-Flow-Aided Domain Inference. As exemplified in

the previous example, the domains of different status codes

can be identified by performing pair-wise set unions of the

collected status codes. However, a key problem with Algo-

rithm 2 is that some set intersections at Line 4 are redundant

if the algorithm is aware of the propagation facts during the

value flow analysis. In particular, we can directly find out

if the status codes returned by some functions overlap or

not using intermediate value flow information. For example

in Figure 4, function f0 takes status codes from f1 so that

status codes in Ret(f0) and Ret(f1) are in the same domain,

without the need to examine their concrete status codes. With

this observation, we propose to optimize domain inference by

recording summaries during value-flow analysis.
To leverage the observation, we further identify two sub-

scenarios and make the corresponding reactions to accelerate

domain inference. The three types of intermediate value flow

information are illustrated in Figure 4:

• Overlapping. During value flow analysis, it is found

that f0 returns status codes directly received from f1,

1: int rv = dialup_handler(); //f0

2: 1 = (rv != OK)

BB1:

3: returnHTTP_BAD_REQUEST;

BB2:TF

4: int rv2 = dialup_handler(); //f0
5: 2 = (rv2 != SUSPENDED)

BB3:

6: returnHTTP_OK;

BB4:T

Fig. 5. The control-flow graph of function f2 in Figure 2

indicating Ret(f0) \ Ret(f1) �= ∅. For this case, status

codes from both functions must be in the same domain.

• Separation. During value flow analysis, it is known f2
receives status codes from f0 but does not continue to

return them, i.e., Ret(f0)∩Ret(f2) = ∅. Therefore, there

is no need to perform set intersections between Ret(f0)
and Ret(f2).

The above relations can be directly recorded during value

flow analysis without additional cost. Before Line 2, we can

query the value flow summary if two sets are in the above

relations. Once an overlapping relation is detected, we can skip

the set intersections at Line 4 and directly merge all included

status codes as one domain. Similarly, if separation relation is

found, i.e., two sets belonging to two distinct domains, there

is no need to test the two sets, thus skipping entry to the loop

and Line 2. Therefore, our optimization saves on the costs of

all-pairs square-time set intersections.

Example IV.5. Figure 4 has present value flow summaries

composed of f0, f1, f2 and their status codes returned. Owing

to the overlapping relation between f0 and f1, we only

need to take the union of two sets Ret(f0) ∪ Ret(f1) as a

domain. Besides, there exists separation relation between f0
and f2 because f2 no longer propagates f0’s status codes. We

might skip the comparison of f0 and f2 entirely. Compared

to C2
3 = 3 pairwise set intersections in the original algorithm,

we make no set intersections at all with the help of value flow

summaries.

C. Mapping Error Detection

Once the domain information is exposed to the detector, the

mapping error detection problem can be reduced to discovering

domain inconsistencies among code-to-code mappings.

Mapping Identification. As also mentioned in IV-B, map-

pings occur in a function when status codes do not continue to

propagate, and some new status codes emerge. For example, in

Figure 4, function f0 is a callee of f2 but Ret(f0) and Ret(f2)
belong to different domains. Since there is no common sta-

tus code between Ret(f0) and Ret(f2), it is possible that

mappings from status codes in Ret(f0) to those in Ret(f2)
exist. The next question is how to infer concrete mappings in

function f2.
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Algorithm 3: Mapping Identification in a Function

Input: A statement �rcv that receives status codes R
from a domain C

Input: A return statement �ret that outputs a status

code d in another domain D
Output: Mapping relation Γ

1 if �rcv can reach �ret on the control-flow graph then
2 Collect path conditions Φ�rcv→�ret ;

3 foreach c ∈ R do
4 if Φ�rcv→�ret ∧ rv = c is SAT then
5 Γ ← {c �→ d};

6 return Γ;

We propose to identify these mappings from a control

flow graph of one function via Algorithm 3. In Figure 5,

at each statement that receives status codes from f0 that

are from one domain, e.g., Line 1 of Figure 5, we can

traverse the control-flow graph to check if that statement can

reach some statements that returns status codes of another

domain. For instance, our analysis begins searching from

Line 1, where the return value rv can be OK or DECLINED.

Along the control-flow path, a return statement at Line 3

does return a status code of the HTTP domain. It can be

further inferred that reachability is guarded by ¬(rv �= OK).
The guard is satisfiable when filling rv = DECLINED,

where DECLINED is a status code from f0. Therefore, a map-

ping DECLINED �→ HTTP_BAD_REQUEST is found. Similarly,

another mapping DECLINED �→ HTTP_OK is constructed in a

path from Line 5 to Line 6. Note that our identification is

language-agnostic because it only as Algorithm 3 only takes

a control-flow graph and mapping-related statements as input.

Inconsistency Detection. In this procedure, the goal of

inconsistency detection is to detect whether destination status

codes diverge. Hence, once all mappings are collected, we

only need to compare mappings within the same source and

destination domain. For every mapping originating from the

same status code that maps to two other different status codes

of the destination domain, TRANSCODE reports it as an error:

(ci, C) �→ (cj ,D) (ci, C) �→ (ck,D) cj �= ck

{ci �→ cj , ci �→ ck} ∈ E (3)

Example IV.6. Considering the example in Figure 2, we

extract two mappings from the two functions, respectively:

(DECLINED, C) �→ (HTTP_OK,D)

(DECLINED, C) �→ (HTTP_BAD_REQUEST,D)

We infer the belonging domain of the three status codes, and

the two mappings are indeed from the same status code to

two destination status codes of the same domain. Hence, we

conclude that there is some inconsistency. The inconsistency

also matches our manual inspection that status codes of a

request filter are inconsistently mapped to two different HTTP

response codes.

TABLE I
Code metrics of evaluated projects

Project Domain Version ID Language(s) KLoC

WolfSSL Encryption 44e575b C 926
Httpd Web Server abe9502 C 382

SQLite Database a90d817 C 383
GRPC RPC Library 81299e2 C, C++ 1,967

Asterisk Voice over IP 2a6a280 C, C++ 4,812

V. IMPLEMENTATION

We have implemented TRANSCODE on top of the LLVM

3.6 framework [18]. the Z3 SMT solver [19] with extensive

use of Standard Template Library (STL).

Pointers, Loops and errno In the value flow analy-

sis (§IV-A), there may be status codes stored to or loaded

from pointer variables. As presented in previous approaches

on value-flow analysis [12, 20, 21], TRANSCODE adopts a

fast unification-based alias analysis [22] to resolve C style

function pointers and employs a class hierarchy analysis [23]

to resolve virtual function calls. For loops, we unroll each

loop once in the control flow graphs and treat the remaining

iterations guarded by the loop guard. This tradeoff is sound for

status codes collection and mapping identification because our

analysis permits propagation of each feasible status code only

through constant’s propagation. Besides, we also consider the

semantics of system-wide status code errno in the implementa-

tion. However, since errno can also be set by library functions,

static results could be incomplete. Nevertheless, as a common

practice [12, 24], our analysis does treat errno as a global

variable by copying it as an auxiliary variable to complement

its value flow.

Pre-processing Status Code Values. Most status codes do

not have corresponding variable names since they are usually

defined using macros and various data structures. Specifically,

in LLVM IR, all status code identifiers have already been

optimized as unnamed integers. Therefore, in addition, the

Clang [25] compiler frontend is employed to preprocess the

source code to obtain names of status codes, and thus is able to

differentiate among status codes with identical integer values.

VI. EVALUATION

In this section, we evaluate TRANSCODE by answering the

following questions:

RQ1: How efficiently does TRANSCODE analyze on real-

world programs?

RQ2: How precisely does TRANSCODE infer domains of

status codes?

RQ3: Can TRANSCODE detect real-world status code map-

ping errors?

A. Experiment Setup
To answer the three research questions, We conduct three

experiments for the above three research questions on real-

world projects. For the experiment subjects, we choose five

representatives, widely-used and large-sized projects from
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TABLE II
Analysis Performance (in Seconds). VFAS and VFAI denotes value flow

analysis using pure solver or applying interpolants-guided refinement,
respectively. DI denotes the stage of domain inference. TD denotes the stage
of mapping error detection. The last two columns are the total running times

without and with refined value flow analysis.

Project VFAS VFAI DI TD TotalS TotalI
WolfSSL 4,465 450 3 764 5,232 1,217

Httpd 454 285 2 27 483 314
SQLite 329 83 4 24 357 111
GRPC 880 791 15 5 900 811

Asterisk 1,169 805 248 92 1,509 1,145

Total 7,297 2,414 272 912 8,481 3,598

different domains: WolfSSL, Apache Httpd, Google RPC,

Asterisk and SQLite, ranging in size from 0.38 MLoC to

4.81 MLoC. Table I shows more details of these subjects. All

projects are the latest version from its code repositories at the

time of the experiment.
All experiments are conducted on a computer with an Intel

Quad-Core i5-6500 3.20GHz CPU and 8 GB RAM.

B. Performance

We divide our analysis into three stages: (i) extracting

status code values for each function by value-flow analysis;

(ii) inferring domains; and (iii) mapping error detection.
Table II shows the analysis time of each stage (VFA, DI

and TD), and the overall analysis time with two different

value flow analyses (TotalS, TotalI). Overall, the TRANSCODE

approach (TotalI) finishes analyzing each project in less than

twenty-one minutes on a moderate computer, which demon-

strates that our approach scales well for real-world projects.

The time consumption is mostly dominated by the value-

flow analysis (VFA, §IV-A) stage (2,414/3,598=67%). This is

reasonable since the value-flow analysis is a context- and path-

sensitive inter-procedural analysis, and it relies on a heavy-

weight SMT solver for resolving path feasibility. Basically,

the analysis time for a project is related to its size and the

number of status codes it has. For example, the analysis for

WolfSSL, which has the largest number of status codes and

functions, is the most time-consuming of the five projects.
By comparing the two different value-flow analyses (VFAS

and VFAI), it is obvious that the interpolants-guided filter-

ing (§IV-A) is effective in reducing the cost. For example, the

interpolation approach is able to reduce 77% (=1-1,217/5,232)

of the analysis cost for WolfSSL. This is because the approach

can speed up the path feasibility verification process by

leveraging the interpolant of UNSAT queries to skip other

similar UNSAT queries, thus improving the efficiency.
The time cost for domain inference (DI, §IV-B) and

mapping error detection is considerably small. For domain

inference, our algorithm, relying on set operations, has a

square time complexity in the worst cases. However, in our

experiment, the time cost is small (2-15s) for four out of five

projects. It only becomes non-trivial (248s) for Asterisk, which

has the largest number of domains.

TABLE III
Inferred facts for each project. Status Codes denote the total inferred status

codes. Domains denote the number of inferred domains.

Project Functions Status Codes Domains

WolfSSL 13,889 79,607 24
Httpd 9,302 9,240 17

SQLite 3,301 3,485 78
GRPC 19,734 2,653 14

Asterisk 13,704 13,996 95

Time consumption of mapping error detection (TD, §IV-C)

typically remains at a low level, because our algorithm es-

sentially takes the previous two stages as input and performs

an intra-procedural analysis. The only exception is WolfSSL,

which has the most status codes. It needs considerably more

time to check whether a presumed mapping is valid.

Answer to RQ1: TRANSCODE is efficient in analyzing

real-world programs. It can scale to projects with mil-

lions of lines of code and can finish the analysis in

twenty-one minutes.

C. Results of Domain Inference

Ground Truth. The ground truth of all domains for five

applications is manually collected. We first refer to official

documents, if any, that describe the status codes’ function-

ality [26, 27]. The rest of the unspecified status codes are

classified manually according to whether they have related

functionality in the source code.

Metric of Correctness. The correctness of domain infer-

ence is measured by how many domains match the ones in

the ground truth. In the program source code, not all defined

status codes are used and returned. Hence, the matching is

defined by a subset of operations as follows:

Di ⊆ Dj Di ∈ Domain,Dj ∈ Ground Truth

Match ← Di
(4)

In the above formula, Domains denotes the superset of

all domains inferred by TRANSCODE, Ground Truth are

manually-collected domains of each program for five appli-

cations, and Match denotes all inferred domains that match

the ground truth.

Definition VI.1. Match Rate is defined as:

Match Rate =
#Match

#Domain
(5)

The experimental results are listed in Table IV. In total,

TRANSCODE has inferred 228 domains in five programs, and

218 of them match with the ground truth, achieving a match

rate of 95.6%. The results also suggest inferred domains are

capable as inputs to error detection of TRANSCODE.
The main source of mismatches is when a small number

of functions do not follow the convention to produce status

codes within the same domain. For example, Figure 6 shows

a function that returns status codes from two domains from

836

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on January 25,2022 at 07:59:34 UTC from IEEE Xplore.  Restrictions apply. 



TABLE IV
Results of Domain Inference

Project Matches Inferred Match Rate

WolfSSL 20 24 0.833
Httpd 13 17 0.765

SQLite 76 78 0.974
GRPC 14 14 1.000

Asterisk 95 95 1.000

Total 218 228 0.956

1 static int authn_cache_post_config(...)
2 {
3 if (!configured)
4 return OK;
5 if (socache_provider == NULL)
6 return 500; // An HTTP status would be a misnomer!
7 }

Fig. 6. Example of outputting status codes from multiple domains

the ground truth. The status code OK returned at Line 4 refers

to a group of status codes only internally used in Httpd, and

status code 500 at Line 6 is an HTTP status code. As such,

TRANSCODE allows both status codes to be grouped, i.e., these

two codes, which in fact belong to two domains, are classified

into one domain. Line 4 is an unfixed defect as the developer’s

comments indicate: An HTTP status would be a misnomer,

meaning that HTTP status codes should never be returned

here. Applications like SQLite and WolfSSL also have a few

functions that return status codes of multiple domains, causing

mismatches.
The results also imply that developers usually differen-

tiate among status codes in a program when implement-

ing different features. For example, Httpd outputs HTTP_OK
to the clients when the HTTP request is valid, and sig-

nals HTTP_BAD_REQUEST when invalid. In either case, it

never outputs status codes unrelated to HTTP operations,

like FTP_ERROR, which cannot be interpreted and handled

correctly by its users.

Answer to RQ2: Overall, 95.6% of domains inferred by

TRANSCODE match the ground truth.

D. Effectiveness of Mapping Error Detection

In this section, we evaluate the performance of TRANSCODE

in detecting mapping errors on five real-world applications.

Overall Results. We apply TRANSCODE to 5 real-world

applications: WolfSSL, Httpd, SQLite, Google RPC, and

Asterisk. Table V lists numbers of mapping error reports.

Regarding the number of bug reports, at least two authors

participate in the bug confirmation6. In general, TRANSCODE

reports 60 status code mapping errors in total, among which

59(=42+4+13) errors have been confirmed by ourselves, and

we also find one report is a false positive. All confirmed reports

6Most authors agreed that all reports are true reports, so we do not adopt
Kappa score to measure the quality.

TABLE V
Results of Mapping Error Detection

Projects Reports False Confirmed

Validated Reviewing Fixed

WolfSSL 31 1 22 0 8
Httpd 7 0 5 0 2

SQLite 9 0 9 0 0
Asterisk 4 0 4 0 0
GRPC 9 0 2 4 3

Total 60 1 42 4 13

1 static int read_request_line(...){
2 ...
3 rv = ap_rgetline(...);
4 if (APR_STATUS_IS_ENOSPC(rv)) {
5 return HTTP_REQUEST_URI_TOO_LARGE;
6 }
7 else if (APR_STATUS_IS_TIMEUP(rv)) {
8 return HTTP_REQUEST_TIME_OUT;
9 }

10 + else if (APR_STATUS_IS_BADARG(rv))
11 + return HTTP_BAD_REQUEST;
12 + }
13 else if (APR_STATUS_IS_EINVAL(rv)) {
14 return HTTP_BAD_REQUEST;
15 }
16 ...
17 return HTTP_OK;
18 }

Fig. 7. Improper mapping of a status code APR_BADARG. The green code is
the developers’ patch of this bug.

have been submitted to developers via issue trackers or forums.

The row validated denotes the numbers of confirmed bugs that

have not been fixed. Thus far, 13 mapping errors have been

fixed by developers or patches proposed by ourselves, and 4

reports are under review.

Confirmed Errors in Apache Httpd. TRANSCODE iden-

tified 7 mapping errors in Apache Httpd, where 2 of them

have been fixed by the developers. Figure 7 shows an example

of mapping errors78. The variable rv saves the status codes

from callee function ap_rgetline. After that, it only maps three

status codes APR_ENOSPC, APR_TIMEUP and APR_EINVAL
and returns the corresponding HTTP status codes. TRANS-

CODE found another mapping also receiving status codes

from ap_rgetline() but performing a mapping APR_BADARG
�→ HTTP_BAD_REQUEST, inconsistent to this example. Then,

there exists an inconsistency of mapping the same code to

two different ones. Apparently, APR_BADARG in the example

is silently discarded and directly mapped to HTTP_OK, leaving

the hidden errors buried. The developer also expressed the

difficulty in determining which status code should be mapped

for these status codes without strong prior knowledge.

Confirmed Errors in Google RPC. TRANSCODE identified

9 new bugs in Google RPC, where 3 have been fixed by its

developers. In Figure 8, the developers forgot to map the status

codes in variable status to a status code GRPC_ERROR_NONE

7https://bz.apache.org/bugzilla/show_bug.cgi?id=63669
8https://svn.apache.org/viewvc?view=rev&rev=1873394
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1 static grpc_error add_socket_to_server(...) {
2 status = WSAIoctl(...);
3 if (status != 0) {
4 - return NULL;
5 + return GRPC_ERROR_NONE;
6 }
7 ...
8 }

Fig. 8. An incorrect status code mapping in Google RPC, where Lines 5-6
are the fix made by a developer.

rather than a NULL value. TRANSCODE identifies it be-

cause the same status codes are inconsistently mapped into

GRPC_ERROR_NONE in another function tcp_connect. We re-

ported two mappings to the developers, and they confirm that

the second mapping is correct.

A False Positive in WolfSSL. Among all reported bugs

in WolfSSL, one is regarded as a false positive, though an

inconsistency of returned status codes is found by our tool9.

The developer argued that the only functional status code is

set to a field of a specific structure ssl->err, so there is

no need to care about the returned status codes. While the

report is marked as a false positive, it does not compromise

our approach. One may still complement the semantics by

considering the specific field as a destination in the mapping

identification stage.

Reports Under Review. There are four reports of GRPC

currently waiting for more information. To the best of our

knowledge, the impact of mapping errors is not trivial to

discover because it does not cause any visible effects such

as crashes. However, to understand its real impact, expert-

level domain knowledge is required to trigger the handling

code of inconsistent mappings and monitor whether they lead

to misbehaviors. Besides, even if these errors do not have

immediate effects, they might mislead the future users of these

functions and possibly leads to new bugs.

Answer to RQ3: TRANSCODE reports 60 mapping errors

among five real-world large-scale applications, of which

59 have been confirmed, and 13 have been fixed by

developers.

E. Industry Experience

We have deployed TRANSCODE to large-scale microservice

systems in WeChat, which process tens of millions of queries

per day. TRANSCODE manages to find status code mapping

errors10. These errors, nevertheless, are missed by the devel-

opers, regression testing, and industry-strength code analyzers

in WeChat. Developers have fixed these errors to avoid the

instability of microservice systems. We have received very

positive feedback from the head of the development center

for our high applicability in industrial settings.

9https://github.com/wolfSSL/wolfssl/issues/3213
10Due to a security contract, we are not permitted to disclose either details

or the number of discovered bugs.

F. Threats to Validity

Threats to External Validity. The major threat to external

validity is the representativity of evaluated subjects. The

programs in the experiment might not be general enough

to expose mapping behaviors. TRANSCODE’s implementation

may not suit some applications with other status code designs

or merely using exceptions. However, we argue that these ap-

plications are representatives of different software eras in both

C and C++. Besides, according to previous studies [28, 29],

constraint solvers can also fail and report false results in

some cases. We adopt the latest stable version of Z3 SMT

Solver (v4.8.2) at the time we implement TRANSCODE to

mitigate possible negative effects.

Threats to Internal Validity. There are mainly two factors

that impact the practicality of mapping error detection.
The first threat is that the oracle for identifying mapping

errors might not hold and be adequate at all places. More

specifically, it is possible on some projects that one status

code is considered valid to be mapped into two different

ones under different conditions. However, the problem might

bring a few false positives as we have not encountered that

in our evaluated subjects. In addition, merely detecting via

inconsistencies might mean some rare mapping errors would

be missed if the only mapping is the bad mapping or mappings

are all incorrect.
The second threat is the soundness of the status code

propagation itself. We currently model all constant integers

that can propagate to return statements as status codes. It is

possible that status codes in some projects are wrapped in

other types, like strings. To this end, one can easily extend

our algorithm by considering type semantics.

VII. DISCUSSION

Identifying Status Code Mappings. Earlier propagation-

based techniques [1, 2] detect missing-checks of status codes.

Existing error-handling bug detectors [4, 5] merely concen-

trates on whether status codes are in the proper ranges.

However, in fact, as pinpointed by [30], status codes are

not general, and are divided into idiosyncratic sets of them.

According to Gunawi et al. [1], one status code value may be

mapped to another, typically from one domain to another. This

is in order to exhibit its different functionality, in which case

their solution cannot detect their errors of them. Numerous

existing efforts mention these complex characteristics, yet

none of them really make an effort to solve the problems

among idiosyncratic sets of status codes. Thus, we present the

first work to detect status code mapping errors in real-world

systems.

Identifying Domains of Status Codes. Status codes are

commonly divided into domains in real-world software, as ob-

served in many software documents when working on different

program parts [10, 27]. However, status codes are defined in

various ways, making it hard to guess which domains they

belong to. For many large-scale projects, status codes are

mingled in different structures, involving pure magic integers,
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enumerate types, and a series of macros, located in different

files and classes. It is impossible to infer domain semantics

from their definitions without a close look at their use patterns.

For instance, most status codes of Httpd are defined in the

same header httpd.h, but there exists no regular indicator for

which status codes represent the related functionality. Instead

of extracting domains from definitions, we propose to infer

them directly from uses.

Confirming Mapping Error Reports. The long reviewing

period of submitted reports might lead to an underestimation of

the impact of mapping errors. Some issues have not received

responses from developers after several months. One of the

reasons might be the complexity of reports for mapping errors.

For each error report, since mapping errors are composed of

at least two inconsistent mappings, the developer needs to

manually track down the propagation of more than two status

codes across several files. Nevertheless, to our knowledge,

we explained in detail how these errors occur when reporting

them. Therefore, a possible future direction is to automatically

generate an explanation of reports that help developers to

understand a mapping error.

Extensions to Other Error-handling Mechanisms. Our

status code mapping error detection establish mainly on lan-

guages that mainly adopts status codes as their error-handling

mechanisms. There also exists others, e.g., exceptions in

Java and Python. In particular, a similar term “rethrow" of

exceptions to status code mappings, denoting throw another

exception during the handling of an exception, is studied in

previous work [31]. A similar static analysis can be applied

to check whether two rethrown exceptions are valid under the

same context. One may implement a type inference and data-

flow analysis to capture the exception flows [32] and apply

our domain-based method to detect mapping errors.

VIII. RELATED WORK

Error Propagation Analysis. Existing methods track the

error codes to detect error propagation bugs. Gunawi et al.

[1] track POSIX status codes over call graphs to detect the

propagation bugs. Rubio-González et al. [2] use an inter-

procedural data-flow analysis to analyze error codes of file

systems. Weiss et al. [30] scale this method to large systems

by storing the error propagation paths in a database. There are

also statistical methods [33–35] infer the probabilities of error

propagation.
All these methods only analyze the propagation of prede-

fined error codes, while TRANSCODE analyzes the propagation

of all status codes, a more general and broader problem.

Mining Error-handling Specifications. There are many

approaches to inferring error-handling specifications. Weimer

and Necula [36] mine the code for temporal specifications and

detect error-handling bugs by verifying typestate properties.

Acharya and Xie [37] automatically mine API error-check and

cleanup specifications from the source code. A later work,

FUNC2VEC [38] improves the quality of API specifications

by mining static program traces generated from random walks

of the inter-procedural control flow graph of the program.

Eberhardt et al. [39] leverage unsupervised learning to learn

API aliasing specifications, which could be further used to

detect error-handling errors. Provided with domain knowl-

edge, DeFreez et al. [6] and Zhou et al. [40] can generate

error specifications via error path inference. Machine learning

techniques [7] and probabilistic methods [41] are also used

to predict error paths and mine error specifications. Type

inference methods [42, 43] infer type comparable variables,

and thus can be used to detect inconsistencies of program

operations.
Our approach uses an inter-procedural value-flow analysis

for inferring status code specifications, which lead to more

fined-grained, and more precise error specifications being

discovered.

Detecting Error-handling Bugs. Rubio-González and Lib-

lit [44] claim the bugs if they find inconsistent handling to the

same error codes between documentation and the source code.

Weimer and Necula [3] detect error-handling bugs by tracing

the propagation of unchecked exceptions in Java applications.

EPEx [4] leverages the error specifications from APEx [41] to

detect error-handling bugs via symbolic execution. ErrDoc [5]

improves EPEx to detect wider categories of error-handling

bugs and generate bug-fixes automatically.
Although previous techniques might detect few bugs over-

lapped with those detected by TRANSCODE, in general, status

code mapping errors, consisting of more complex semantic

information, are much harder to detect. TRANSCODE can

automatically detect them without relying on extra knowledge,

for example, what are the errors and non-errors. Besides,

TRANSCODE employs static program analysis instead of sym-

bolic execution. Thus, it scales to large-scale software systems.

IX. CONCLUSION

Mapping status codes is a common programming pattern in

software development. To the best of our knowledge, we are

the first to focus on detecting errors in status code mappings.

In this paper, we propose TRANSCODE to automatically detect

such errors in large software projects. It is evaluated on five

real-world software projects. The results show TRANSCODE

is promising in detecting status code mapping errors: it has

discovered 59 mapping errors in five projects, 13 of which

have been fixed by the developers.
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