
Demystifying Template-based Invariant Generation
for Bit-Vector Programs

Peisen Yao∗, Jingyu Ke†, Jiahui Sun∗, Hongfei Fu† ✉, Rongxin Wu‡, and Kui Ren∗
∗Zhejiang University, China. Email: {pyaoaa, jasonj, kuiren}@zju.edu.cn

† Shanghai Jiao Tong University, China. Email: {Windocotber, jt002845}@sjtu.edu.cn
‡School of Informatics, Xiamen University, China. Email: wurongxin@xmu.edu.cn

Abstract—The template-based approach to invariant generation
is a parametric and relatively complete methodology for inferring
loop invariants. The relative completeness ensures the generated
invariants’ accuracy up to the template’s form and the inductive
condition. However, there has been limited in advancing the
approach to bit-precise reasoning, which involves modeling
integers using bit-vector arithmetic. This is unfortunate because
bit-precise reasoning is crucial for faithfully and accurately
modeling machine integer semantics and, thus, for ensuring sound
and precise program verification.

In this experience paper, we present an experimental study of
bit-precise, template-based invariant generation on three fronts:
the precision of different invariant templates, the performance
of different constraint solvers for solving the constraints, and
the effectiveness of the template-based approach compared to
existing bit-precise verification techniques. Through an extensive
experimental evaluation over a wide range of benchmarks, we find
that (1) the choices of invariant templates and constraint solvers
have varying degrees of impact on the precision and efficiency of
invariant generation; (2) the template-based approach can handle
benchmarks that other approaches for bit-vectors cannot handle.
The results also reveal several guidelines for advancing future
research on template-based invariant generation.

Index Terms—Invariant generation, constraint solving, compar-
ison and analysis

I. INTRODUCTION

An assertion at a program location is an invariant if it
is always satisfied by the values of the program variables
whenever the location is reached during program execution.
Invariants are essential in program analysis and verification
because they offer a sound overestimation of the program’s
reachable states. As a result, they have been widely used in
reasoning about properties of programs, such as safety, non-
interference, and complexity. Over the last few decades, various
techniques have been proposed for automatically generating
invariants, such as abstract interpretation [1–4], template-based
approach [5–7], SMT-based model checking [8, 9], recurrence
analysis [10–13], and machine learning techniques [14–17].

A significant amount of work on invariant generation fol-
lows the template-based approach [5–7, 18–26, 26–30].1 This
approach first establishes a template with unknown parameters
for the target invariant and then finds invariants that match the

⋆ Peisen Yao and Kui Ren are also with the ZJU-Hangzhou Global Scientific
and Technological Innovation Center.

1Note that in the literature, some works also refer to this methodology as
“constraint solving-based approach”.

template by extracting and solving constraints on the unknowns.
For example, consider the invariant template x ≤ a, where
x is the program variable, and a is the unknown parameter.
The approach involves generating and solving constraints in
the form of ∀x, x′.Φ(x, x′, a), where Φ is encoded from the
program structure (detailed in § II-B).

The template-based approach offers several notable advan-
tages for invariant generation. First, the approach is relatively
complete, provided that the underlying logic of the constraint
is complete. This means that the approach can find the desired
invariant if it is expressible in the template. This completeness
guarantee is vital for generating precise invariants [5] and is
often not offered by conventional abstract interpretation [31, 32].
Second, the approach is goal-directed, as it only computes
the invariants that are necessary for establishing program
correctness. Specifically, the constraint solver combines in-
formation from the pre-condition, program, and post-condition
into a single quantified constraint. Third, unlike many existing
SMT-based model-checking algorithms [8, 9, 33, 34], the
approach does not rely on advanced SMT solver features such
as interpolant generation.

Table I categorizes representative algorithms in the template-
based invariant generation literature by their targeted programs
and invariant templates. The template-based approach has
been extensively employed in generating both linear and non-
linear invariants for affine programs, with some supporting
uninterpreted functions, arrays, and probabilistic programs.
Besides, most of these efforts treat integer program variables
with a limited range (e.g., 32-bit integers) as mathematical
integers or reals rather than machine integers (bit-vectors).

Unfortunately, modeling integer program variables using
unbounded integers/reals does not faithfully capture all the
properties of machine integers, such as wrap-around behavior
caused by under- and overflows. This becomes especially
problematic in the verification of low-level system code, as
it may compromise the soundness (e.g., by discovering an
invalid invariant) and completeness (e.g., by missing a critical
invariant) of the verifier. For example, consider the program
in Figure 1. A verification tool based on unbounded integers
will conclude that the assertion must hold because a value
starting at one remains positive no matter how many times it
is incremented. However, this conclusion fails to reflect the
actual behavior of machine integer semantics, as Line 3 could
lead to an integer overflow.

1 assume i n t x = 1 ;
2 whi le (*) {
3 x = x + 1 ;
4 }
5 a s s e r t x > 0 ;

Fig. 1: A code snippet.

TABLE I: A summary of representative studies on template-
based invariant generation.

Programs Invariant Templates Algorithms

linear arithmetic polyhedron [5–7, 18–21]
linear arithmetic non-linear [22–26, 26–30]
linear arithmetic + UF polyhedron [43]

linear arithmetic + array polyhedron over
array accesses [44]

linear arithmetic + probability polyhedron [45]
bit-vector arithmetic polyhedron [46, 47]

Indeed, both the hardware model checking and software
verification communities have dedicated significant efforts to
extending various verification techniques to support bit-vector
arithmetic, such as abstract interpretation, CEGAR [8, 33],
IC3/PDR [9, 34–37], and syntax-guided synthesis [38, 39].
However, while there are a few studies on template-based
ranking function synthesis for bit-vector arithmetic [40–42],
relatively little progress has been made in lifting the approach
to invariant generation for bit-vector programs.

This paper contributes to the first empirical evaluation of
template-based invariant generation for bit-vector programs.
First, we compare the efficiency and effectiveness of the
template-based approach when using different invariant tem-
plates and constraint solving strategies. Second, we compare the
performance of the approach against other invariant generation
techniques for verifying bit-vector programs. An in-depth study
will assist in choosing the appropriate verification engine and
guide the further exploration of existing verification techniques.

As a first step towards achieving the goal, we present
EAGLE, a template-based invariant generator for bit-vector
programs. EAGLE takes as input SyGuS or CHC files annotated
with assertions. It offers various invariant templates, such
as interval, zone, octagon, and bounded polyhedrons, along
with two precision-enhancing strategies: disjunctive completion
and property strengthening (§ IV-A). Moreover, we conduct
a systematic review of existing techniques for solving the
quantified bit-vector constraints in the template-based approach
(§ IV-B) and integrate a diverse group of constraint solving
engines into EAGLE.

We collect a set of 240 benchmarks from the invariant
track of SyGuS-COMP and previous literature on bit-precise
verification. We run EAGLE using different invariant templates
and constraint solvers, and compare it against other verification
techniques, including CEGAR, IC3/PDR, and enumerative
synthesis. Our study demonstrates that the template-based
approach implemented in EAGLE can handle benchmarks
beyond the reach of previous approaches. This highlights
the effectiveness of the approach in generating invariants for

bit-vector programs. Furthermore, our findings reveal several
guidelines for advancing future research on template-based
invariant generation, such as the choice of invariant templates
and potential directions for algorithmic improvements (§ V-C).

To summarize, this paper makes the following contributions:

• We present a comprehensive framework for the template-
based invariant generation of bit-vector programs and
collect a new data set including 240 programs, which
can be used for future research on bit-precise verification.
The implementation of our framework, along with the
benchmarks suite, is publicly available at the web site:
https://tinyurl.com/3ajsbtbr.

• We conduct an extensive study of different invariant
templates and constraint solvers for the template-based
generation of bit-vector programs, and compare them
with other SMT-based invariant generation techniques.
The results provide valuable insights into the strengths
and limitations of various methods in this domain.

II. PRELIMINARIES

In this section, we first present the basic concepts of inductive
invariants (§ II-A) and then introduce the template-based
approach to invariant generation (§ II-B).

A. Inductive Loop Invariant

To ease the presentation, we consider programs of the
following form throughout this paper:

assume Pre(X); while (G(X)) { S; } assert Post(X);

where X is the set of variables occurred in the program,
Pre(X) and Post(X) denote the pre- and post-conditions,
respectively, G(X) represents the loop condition, and S is the
loop body.

Definition 1: An inductive loop invariant (loop invariant
for short) with respect to the pre-condition Pre(X) and the
post-condition Post(X) is an assertion Inv such that:

ϕ1 : ∀X.Pre(X) → Inv(X)∧
ϕ2 : ∀X,X ′.Inv(X) ∧G(X) ∧ T (X,X ′) → Inv(X ′)∧

ϕ3 : ∀X.¬G(X) ∧ Inv(X) → Post(X)

Equation (1)

where ϕ1 specifies that Inv must include the program states
resulted from initial states, ϕ2 says that Inv is preserved after
every iteration of the loop,2 and ϕ3 states that the post-condition
must hold when leaving the loop.

Example 1: Consider the following simple integer program:

1 assume i n t x = 0 ;
2 whi le (x < 10) { x = x + 1 ; }
3 a s s e r t x = 10 ;

2The two sets X and X′ are copied of the sequences of program variables
at the beginning and end of a loop iteration, respectively.

https://tinyurl.com/3ajsbtbr

Let Inv(x) be the desired inductive loop invariant. We have

∀x.x = 0 → Inv(x) ∧
∀x, x′.Inv(x) ∧ x < 10 ∧ x′ = x+ 1 → Inv(x′) ∧

∀x.¬x < 10 ∧ Inv(x) → x = 10

For example, the relation 0 ≤ x ≤ 10 is an inductive loop
invariant that can verify the program because:

∀x.x = 0 → 0 ≤ x ≤ 10 ∧
∀x, x′.0 ≤ x ≤ 10 ∧ x < 10 ∧ x′ = x+ 1 → 0 ≤ x′ ≤ 10 ∧

∀x.¬x ≥ 10 ∧ 0 ≤ x ≤ 10 → x = 10

The loop invariant generation problem is to find an Inv such
that Equation (1) holds.

B. Template-based Invariant Generation
To solve the invariant generation problem, the key idea of the

template-based approach [5–7] is to find invariants that match
a pre-defined template by extracting and solving constraints.
Specifically, the approach involves three steps:

1) First, it fixes a desired template for the invariants,
in which there are unknown quantities. Typically, the
template is a fixed expression F (X,Y) over program
variables X and template parameters Y . Intuitively, the
template restricts the syntactical form of the invariants.

2) Second, it generates constraints over X,X ′, and Y from
the structure of the program, following the specification
of inductive loop invariants (Definition 1), yielding:

∀X.Pre(X) → F (X,Y) ∧
∀X,X ′.F (X,Y) ∧G(X) ∧ T (X,X ′) → F (X ′, Y) ∧

∀X.¬G(X) ∧ F (X,Y) → Post(X)

Equation (2)

For simplicity, we use ∀X,X ′.Φ(X,X ′, Y) to denote
the above constraint in the rest of this paper.

3) Finally, the constraint ∀X,X ′.Φ(X,X ′, Y) is handed
to a constraint solver to compute feasible values of the
template parameters Y . The invariant can be obtained
by instantiating Y in the template F (X,Y) with the
feasible values.

Next, we use Example 1 to illustrate the above steps.
Setting the Invariant Template. First, suppose that we use

a ≤ x ≤ b as the invariant template, where a and b are the
template parameters. Intuitively, an assignment to a and b
qualifies a candidate interval invariant, e.g., 1 ≤ x ≤ 3 with
{a = 1, b = 3}. But a random assignment may not necessarily
yield a feasible invariant because it may falsify Equation (2).

Generating Constraints. Second, we extract the constraint
following the definition of loop invariants (Equation (1)).
Specifically, we replace each occurrence of Inv by the template
a ≤ x ≤ b, which yields

∀x.x = 0 → a ≤ x ≤ b ∧
∀x, x′.a ≤ x ≤ b ∧ x < 10 ∧ x′ = x+ 1 → a ≤ x′ ≤ b ∧

∀x.¬x < 10 ∧ a ≤ x ≤ b → x = 10

The above constraint serves as a declarative specification of
the desired invariants.

Solving Constraints. Finally, we solve the above constraint
to obtain feasible values of a and b. For example, a feasible
solution is {a = 0, b = 10}. After replacing a, b in the template
a ≤ x ≤ b with the solution, we can obtain the invariant
0 ≤ x ≤ 10 in Example 1.

The central problem in the above steps is how to solve
the constraint ∀X,X ′.Φ(X,X ′, Y) with universal quantifiers.
Despite the research progress, decision procedures for quanti-
fied formulas can be fragile and may become the performance
bottleneck of the template-based approach.

To solve the constraint in template-based invariant genera-
tion, most existing studies employ domain-specific reduction
techniques to remove the universal quantifiers. These reduction
methods typically involve lightweight rewriting procedures such
as Farkas’ Lemma for linear arithmetic [7], and Ackermann’s
reduction for uninterpreted functions [43].3 After removing the
universal quantifiers, we can solve the resulting quantifier-free
formulas and obtain the invariant.

Remark 1: A relevant line of research is SyGuS-based
invariant generation, which typically constrains the syntactic
structures of invariants by utilizing either a user-supplied
grammar [39] or an automatically generated one [48]. Various
approaches are employed by existing SyGuS solvers, such as
machine learning and enumerative synthesis [39]. In compar-
ison, the template-based approach is relatively complete for
certain first-order theories and invariant templates; however, the
completeness guarantee is absent in most existing SyGuS-based
invariant generation techniques.

III. MOTIVATION

In this section, we first highlight the benefits of adapting
the template-based approach to bit-vector programs (§ III-A)
and then discuss the obstacles to the adaption (§ III-B).

A. Template-based Invariant Generation for Bit-Vectors

The advances in SMT solving have enabled significant
progress in automated program verification. Among the various
theories, fixed-sized bit-vector arithmetic holds particular
importance. Table II lists a typical set of operations in this
theory, which allow for faithfully encoding machine integer
semantics, such as non-linear computations, bitwise operations,
and wrap-around behaviors.

Although the template-based approach to invariant generation
has been extensively studied for integer or real arithmetic, there
has been a notable lack of investigation into its application for
bit-vector arithmetic. In this paper, we consider the problem
of template-based invariant generation for bit-vector programs,
which can offer several significant advantages:

• First, the approach is relatively complete concerning
a wide variety of invariant templates, owing to the

3An alternative strategy is to use quantifier elimination. However, quantifier
elimination is usually computationally expensive, while these rewriting
procedures are lightweight.

TABLE II: A set of bit-vector operators and their corresponding
SMT-LIB-2 syntax.

Symbol SMT-LIB Syntax

=, <u, >u, <s, >s =, bvult, bvugt, bvslt, bvsgt
∼,− bvnot, bvneg
&, |, <<,>>,>>a bvan, bvor, bvshl, bvlshr, bvashr
+, ·,mod, div bvadd, bvmul, bvurem, bvudiv
◦ concat
[u : l] extract

decidability of the quantified bit-vector theory [49]. By
“relatively complete”, we mean that if there exists an
invariant that is expressible within the template and can
verify a program, then the approach can find the invariant.
Such a guarantee of completeness is rarely provided in
conventional abstract interpretation [31, 32].

• Second, similar to CEAGR, the approach is goal-directed
in that it computes only the invariants that are necessary
for proving the program’s correctness. The approach can
combine the information from the pre-condition, program,
and post-condition in one constraint, which is solved via
a constraint solver.4

• Third, the approach does not necessitate the use of
advanced SMT solver features like interpolant generation,
which is not widely available for the bit-vector theory.
In comparison, many other verification algorithms such
as IC3/PDR [50, 51] and trace abstraction [52] typically
rely on efficient interpolant generation, posing a common
obstacle in utilizing them for bit-vector programs.

B. Obstacles to Adopting the Template-based Approach

Effectiveness of Invariant Templates. As previously men-
tioned, the existing studies on the template-based approach have
primarily focused on integer or real arithmetic. Despite the ben-
efits discussed in § III-A, there has been comparatively limited
research on template-based invariant generation for bit-vector
programs. While it is possible to modify existing templates
to accommodate bit-vector arithmetic, the effectiveness of this
adaptation lacks empirical evidence.

Comparison of Different Invariant Templates. On one hand,
the accuracy and computational cost of different invariant
templates can vary. While some templates offer higher precision,
they may require a greater computational cost, and vice
versa. The trade-offs between precision and performance
in template-based bit-precise verification are not yet well
understood. Additionally, the current template-based approach
mainly focuses on conjunctive invariants, which may not
provide sufficient precision for verification purposes. To
enhance precision, various strategies exist, such as using
disjunctive templates. Disjunctive invariants are important for
capturing program characteristics such as mode transitions
and multiple phases [53, 54]. However, it is uncertain how

4Some studies on the template-based approach do not consider post-condition
when encoding the constraint. Thus, their implementations are not goal-directed.

these improvements could elevate the capabilities of invariant
templates for verifying bit-vector programs.

Comparison with other Invariant Generation Techniques. On
the other hand, it is important to explore how the template-
based approach for bit-vector programs compares to other
existing verification techniques, such as CEGAR [8, 33, 55],
IC3/PDR [9, 34–37], and syntax-guided synthesis [38, 39].
Indeed, several efforts have been made to extend these
verification techniques to bit-vector arithmetic. By comparing
the template-based approach with other invariant generation
techniques, we can gain a comprehensive understanding of
their respective strengths and limitations in terms of precision
and scalability.

Scalability of Constraint Solving. As discussed in § II-B,
existing studies following the template-based approach often
rely on domain-specific reductions to efficiently remove univer-
sal quantifiers in Equation (2), such as Farkas’ Lemma for linear
arithmetic [7] and Ackermann’s reduction for uninterpreted
functions [43]. However, these lightweight reductions do not
apply to bit-vector arithmetic. Consequently, we have to solve
the quantified bit-vector formula, i.e., ∀X,X ′.Φ(X,X ′, Y),
where Y represents the set of template parameters. To date,
there are three primary categories of approaches to solving
such constraints.

Quantifier Instantiation Approach. First, we can utilize
existing SMT solvers that are capable of handling quantifiers.
Z3, for example, was the first SMT solver to support quantified
bit-vector formulas [49]. Since then, there have been several
advances in solving quantified bit-vector constraints [49, 56–
58]. These solvers leverage different strategies for quantifier
instantiation, repeatedly instantiating universally quantified
variables in the Skolemized formula with ground terms until an
unsatisfiable quantifier-free formula or a model of the original
formula is obtained. One of the key benefits of the quantifier
instantiation approach is that it can handle formulas with
arbitrary quantifier alternations.

Bit-Blasting Approach. Second, we can reduce the bit-vector
constraint to Boolean-level constraints, which can be modeled
and solved using different ways.

1) Binary Decision Diagram (BDD): The quantifier-free part
Φ(X,X ′, Y) of the formula can be translated into a BDD,
and quantifiers can be handled using approximations [58];

2) QBF solving: The formula Φ(X,X ′, Y) can be bit-
blasted into a Boolean formula, with the quantifiers added
accordingly, resulting in a QBF formula. We can solve
the QBF formula via QBF solvers.

3) SAT solving: The quantifiers in the QBF formula can be
eliminated through quantifier elimination, resulting in an
equi-satisfiable SAT formula.

It is important to note that the bit-blasting approach can
significantly increase the size of the formula and may lead to
the loss of structural information.

Iterative Synthesis Approach. Third, we can use an SMT-
based, counterexample-guided inductive synthesis (CEGIS)-
style algorithm that searches for assignments to Y [46, 59].

At a high level, this approach involves a CEGIS loop, where a
learner finds solutions to the template variables Y , and a verifier
checks the solutions and produces counterexamples of invalid
candidates. This process continues until a sufficient assignment
is found or the constraint is proven to be unsatisfiable. There are
two noteworthy points. First, both the learner and verifier rely
on an SMT solver to solve quantifier-free bit-vector formulas.
Unlike the quantifier instantiation approach, the SMT solver
itself does not need to handle quantifiers. Second, the CEGIS-
based approach is complete for bit-vector constraints because
the search space is finite.

However, the above three categories of approaches have
primarily been developed independently for application do-
mains other than template-based invariant generation, or for
general forms of quantified bit-vector formulas (as opposed
to our specific setting of ∀X,X ′.Φ(X,X ′, Y)). As such,
their comparative effectiveness in our context remains unclear.
To bridge the gap, we aim to explore benchmarking these
approaches to gain a better understanding of their respective
strengths and limitations.

IV. EXPERIMENTAL STUDY DESIGN

In this paper, we aim to understand the accuracy and effi-
ciency of the template-based approach for verifying bit-vector
programs by investigating the following research questions:

• RQ1: How does the effectiveness of the template-based
approach vary in generating bit-vector program invariants
under different template types and solving methods?

– RQ1.1: How do different linear invariant templates
perform in verifying bit-vector programs?

– RQ1.2: How do the precision-enhancing strategies
impact the precision of the approach?

– RQ1.3: How do different constraint solving strate-
gies perform in handling the quantified bit-vector
constraints from the template-based approach?

• RQ2: How does the template-based approach perform,
in terms of accuracy and time cost, compared to other
invariant generation techniques?

To answer these questions, we have developed EAGLE, an
invariant generation tool for bit-vector programs. EAGLE takes
as input verification problems encoded using Constraint Horn
Clauses (CHC) or SyGuS 2.0 languages, which are commonly
used as intermediate representations for verification.

We proceed by providing the implementation details of
EAGLE, including the invariant templates (§ IV-A) and con-
straint solving engines (§ IV-B). Following this, we discuss the
third-party invariant generation tools used in our experiments
(§ IV-C). Lastly, we explain the details of our experimental
setup (§ IV-D).

A. Invariant Templates in EAGLE

In the template-based approach, the expressiveness of the
obtainable invariants is determined by the templates used. In
this section, we first present the basic invariant templates used in
our study, followed by two strategies for potentially improving
the precision of these basic templates.

Linear Templates. EAGLE supports several template linear
domains that have been extensively studied in the literature.

• The interval domain [1] is a widely-used, non-relational
domain about single-variable-inequalities.

• The zone domain [60] is a relational domain supporting
predicates of the form x − y ≤ c where x and y are
variables, and c is a constant.

• The octagon domain [61] is a relational numerical abstract
domain that supports binary inequalities of the form ax−
by ≤ c, where x and y are variables, a, b ∈ {−1, 0, 1}
are coefficients, and c is the bound of the inequality.

• The polyhedron domain [2] is a relational domain used to
approximate linear inequalities in the form of a0 + a1 ∗
x1 + · · ·+ an ∗ xn ≤ 0, where x1, . . . , xn are variables,
and a0, . . . , an are coefficients.5

All of the above templates can be regarded as elements in the
family of Template Constraint Matrix (TCM) domains. In our
setting, the variables in the invariant templates are bit-vectors
representing finite-size integers.

Improving Precision with Disjunctive Completion. Dis-
junctive completion is a well-known technique in abstract
domain refinement that enhances an abstract domain to make
it disjunctive. Disjunctive invariants are important in capturing
various program characteristics, such as mode transitions,
multiple phases, and other disjunctive features of programs. To
generate disjunctive invariants, we follow the idea of bounded
disjunctive domains in abstract interpretation [53]. This involves
fixing the number of disjuncts in the invariant. For instance,
instead of using the interval template F ≡ l ≤ x ≤ u, we can
introduce its disjunctive variant F ′ ≡ l1 ≤ x ≤ u1 ∨ · · · ∨ lk ≤
x ≤ uk, which consists of k disjuncts.

It is important to note that when employing a disjunctive
template, both the number of template parameters (e.g.,
{l1, u1, . . . , lk, uk}) and the size of the generated constraint
increase proportionally with the value of k. Consequently, this
would increase the overhead of the constraint solver.

Improving Precision via Property Strengthening. In
addition to improving precision through disjunction, we have
developed a simple optimization strategy called property
strengthening, which has the potential to enhance the precision
of a given template. Our idea follows previous research that
rephrases the invariant synthesis problem as strengthening the
post-condition [62, 63]. Existing techniques typically generate
new lemmas iteratively to strengthen the post-condition, em-
ploying methods such as machine learning, interpolation, or
abductive inference [62]. However, most of these techniques
are designed for linear integer or real arithmetic and are not
directly applicable in our context.

Our property strengthening strategy directly uses the sub-
formulas in the translated constraint (following Equation (1)).
To illustrate this approach, let us consider an original tem-
plate F ≡ a ≤ x ≤ b. Instead of generating invariants

5Note that in our evaluation, we only use a single linear inequality as the
template. However, in general, the polyhedron domain can allow for multiple
linear inequalities.

TABLE III: Evaluated invariant templates, optimization strate-
gies, and their abbreviations.

Basic template Abbreviation

Interval template int
Zone template zone
Octagon template oct
Polyhedron template poly

Optimization strategy Abbreviation

Disjunctive completion DC
Property strengthening PS

TABLE IV: Constraint constraint solving engines.

Approach Constraint Solving Engine

Quantifier
Instantiation QI-Z3, QI-Bitwuzla, QI-CVC5, QI-Yices2

Bit
Blasting

BDD-based: BB-Q3B
QBF-based: BB-caqe
SAT-based: BB-CaDiCaL, BB-Glucose, BB-Lingeling

Iterative
Synthesis IS-Z3, IS-CVC4, IS-MathSAT, IS-Yices2, IS-Boolector

using this template, we can choose a strengthened template
F ′ ≡ a ≤ x ≤ b∧ (¬G(X) → Post(X)), where G(X) is the
loop condition and Post(X) is the post-condition. Importantly,
this approach involves only syntactic changes to the template
and does not require additional logical reasoning for the
strengthening process.

Similar to the disjunctive completion strategy, the property
strengthening strategy increases the size of the translated
constraint. However, it does not introduce new variables to
the constraint since F ′ uses the same set of variables as the
original template F .

In summary, Table III provides an overview of the basic
templates and optimization strategies used in our experiments.
We will discuss the impact of these strategies in § V.

B. Constraint Solving Engines in EAGLE

In the template-based approach, the key enabling component
is the decision procedure for solving the quantified bit-vector
constraints ∀X,X ′.Φ(X,X ′, Y), where Y represents the set
of template parameters. Table IV lists all the constraint solving
engines utilized in our study. As discussed in § III-B, EAGLE
is configurable for using three categories of approaches.

Quantifier Instantiation Approach. In the SMT solving
community, significant progress has been made in recent years
in solving quantified bit-vector formulas [49, 56, 57]. While
these solvers are capable of handling formulas with arbitrary
quantifier alternations, our particular focus is on constraints
of the form ∀X,X ′.Φ(X,X ′, Y). For our evaluation, we have
selected five state-of-the-art SMT solvers:

• Z3 [49] combines a set of effective word-level simplifi-
cations, and instantiates universally quantified variables
with constants or subterms of the original formula.

• Boolector [56] uses a counterexample-guided synthesis
approach for quantifier instantiation, generating a ground
term for instantiation based on a predefined grammar.

• CVC5 [57] employs predetermined rules based on in-
vertibility conditions to directly provide terms that can
prune many spurious models, without using potentially
expensive counterexample-guided synthesis.

• Bitwuzla [64] implements a combination of
counterexample-guided quantifier instantiation and
syntax-guided synthesis. It also employs a dual approach
by applying the same technique to the negation of the
input formula in separate threads.

• Yices2 [65] is based on the counterexample-guided quan-
tifier instantiation (CEGQI) framework, using invertibility
conditions [57] and generalization-by-substitution [66] for
the generalization.

Bit-Blasting Approach. As discussed in § III-B, we can
reduce the quantified bit-vector constraint ∀X,X ′.Φ(X,X ′, Y)
into Boolean-level constraints, which can be handled in
different ways:

• BDD: We have chosen Q3B [58], the state-of-the-art BDD-
based technique for solving quantified bit-vector formulas.
Q3B employs approximations to handle quantifiers.

• QBF: We implement a bit-blaster that translates a quanti-
fied bit-vector formula into QBF. We have chosen caqe
for its top ranking in the QBFEVAL competition.

• SAT: We use the quantifier elimination algorithm (the“qe2”
tactic in Z3) to eliminate the quantifiers in the quantified
formula The resulting SAT formula can be solved via
several existing SAT solvers, including CaDiCaL, Glucose,
Gluecard, Minicard, and MiniSat.

Iterative Synthesis Approach. Finally, we use PySMT to
implement the CEGIS-style algorithm to solve the quantified bit-
vector constraint [46, 59]. The algorithm involves a learner and
a verifier that iteratively finds and validates assignments to the
template parameters Y using SMT solvers. The performance of
this approach heavily relies on the underlying SMT solver used
by both the learner and verifier. Hence, our implementation
allows for using different solvers as the SMT backend,
including Z3, CVC4, MathSAT, Yices2, and Boolector.

C. Other Invariant Generation Techniques

We compare EAGLE against several state-of-the-art CHC and
SyGuS solvers listed in Table V. These solvers are specifically
designed to support bit-precise reasoning and utilize different
verification techniques:

• Spacer: a CHC solver inside the Z3 SMT solver, which
is based on IC3/PDR (property-directed reachability) and
supports model-based projection for bit-vectors.

• Eldarica [8] 6: a CHC solver based on CEGAR, which sup-
ports bit-vector interpolant generation [33] for abstraction
refinement.

• CVC5Sy [39]: a SyGuS-based invariant generation engine
inside the CVC5 SMT solver. It combines several novel
bounded term enumeration strategies for enumerating
candidate invariants.

6https://github.com/uuverifiers/eldarica

https://github.com/uuverifiers/eldarica

TABLE V: Compared third-party invariant generation tools.

Tool Technique Interface

Spacer IC3/PDR (Property-Directed Reachability) CHC
Eldarica Interpolation-based CEGAR CHC
CVC5Sy Syntax-guided, enumerative synthesis SyGuS

To ensure a fair comparison, we do not include other tools
that target C/C++ programs, as they would require additional
symbolic execution or verification condition generation to
encode programs to symbolic constraints. Besides, we do not
include other SyGuS-based tools (e.g., [48]), as they primarily
focus on integer or real arithmetic and are not applicable to
our specific setting.

D. Experimental Setup

Benchmarks. We have collected a set of 240 verification
tasks from various sources to serve as benchmarks for our
evaluation: (1) 214 instances from the authors of LoopInvGen,7

who collect several benchmarks from SyGuS-COMP, SV-
COMP, and other verification literature (e.g., [62, 67]); (2)
26 instances from [68], a state-of-the-art work for disjunc-
tive invariant generation. These problems are specified via
SyGuS(LIA), meaning that integer variables are treated as
unbounded. We translate them to SyGuS(BV) and CHC(BV)
formats to evaluate bit-vector invariant generation capability.
Following the settings of the previous work [17, 62], we only
consider safe benchmarks to focus on loop invariant inference
instead of bug finding.

Environment. All experiments are conducted on a 128-core
server with Intel(R) Xeon(R) Gold 6338 3.2GHz CPUs, 512
GB RAM, running Ubuntu 22.04. Following [68], we impose
a time limit of 300 seconds for running each benchmark under
a particular verifier.

Methodology. Our experiments proceed as follows. First,
to answer RQ1.1, we compare the four basic templates.
Second, to answer RQ1.2, we assess the effectiveness of two
precision-enhancing strategies, namely disjunctive completion
and property strengthening. Third, to answer RQ1.3, we
study the performance of all the constraint solving engines in
Table IV. Finally, to answer RQ2, we compare EAGLE against
three different invariant generation approaches in Table V.

V. RESULTS AND ANALYSIS

In this section, we present the results of the experiments
and discuss our findings.

A. Impact of Different Strategies (RQ1)

To explore the influence of different strategies, we examine
the effectiveness of EAGLE under various configurations,
including different invariant templates and constraint solvers.
It is worth noting that the number of successfully verified
instances can significantly vary depending on the configuration
used. For RQ1.1 and RQ1.2, we present the results of three

7https://github.com/SaswatPadhi/LoopInvGen

0 50 100 150 200 250
Benchmark Index

0

1000

2000

3000

4000

5000

6000

7000

8000

Cu
m

ul
at

iv
e

Ti
m

e
(s

)

Cumulative Time vs. Benchmark Index
poly/QI_z3 int/QI_z3 zone/QI_z3 oct/QI_z3

Fig. 2: Cumulative time of all benchmarks verified as safe.

zone oct poly int
Template

0

5

10

15

20

25

30

Ve
rif

ie
d

Ra
te

BB_q3b IS_yices QI_z3

Fig. 3: Verified rates of using the four basic templates and the
three best constraint solvers. The “Verified Rate” refers to the
rate of benchmarks verified as safe.

solvers that perform relatively well in each category, namely
QI-Z3 for quantifier instantiation, BB-Q3B for bit blasting,
and IS-Yices2 for iterative synthesis. For RQ1.3, we provide a
comprehensive analysis of the performances of various solvers.

Precision of Basic Templates (RQ1.1). We first evaluate
the effectiveness of the four basic invariant templates, namely
interval, zone, octagon, and polyhedron, without employing
the two precision-enhancing strategies. The high-level results
of the experiment are summarized in Figures 2 and 3, while
more detailed results are presented in Table VI. Overall, we
make the following observations.

First, overall, the interval template outperforms other tem-
plates for each of the three solvers. On average, it solves 8,
12, and 27 more instances than zone, octagon, and polyhedron
templates, respectively. This finding is somewhat counter-
intuitive since other relational domains are typically perceived
as more precise than the interval domain. In conventional
abstract interpretation, the phenomenon could be due to several
reasons. For one thing, the abstract transformers of different
domains may not necessarily be the most precise, leading
to non-optimal invariants [3]. For the other thing, widening
operations in fixed-point iteration can result in uncontrolled
loss of precision [69]. However, in the template-based approach

https://github.com/SaswatPadhi/LoopInvGen

TABLE VI: Comparison of EAGLE’s variants that use different invariant templates. “DISk” represents disjunctive completion
with k disjuncts. “PS” means property strengthening. “Verified” represents an instance is verified as safe. An item x, y in the
“Failed” column represents that the solver either (1) returns “unsat” (which means the template is not expressive enough to verify
the instance) on x instances, or (2) returns “unknown” abnormally (within a relatively short time) on y instances. “Timeout”
simply means that the tool runs out of time limit. The configuration that verifies the most instances in each column is shaded.

Solver Configuration
Interval Zone Octagon Polyhedron

Verified Failed Timeout Verified Failed Timeout Verified Failed Timeout Verified Failed Timeout

QI-Z3

Base 70 0,170 0 47 0,193 0 53 0,187 0 28 0,212 0
DIS2 63 0,177 0 36 0,204 0 20 0,220 0 25 0,215 0
DIS5 34 0,206 0 33 0,207 0 12 0,228 0 23 0,217 0
DIS10 26 0,214 0 29 0,211 0 8 0,232 0 26 0,214 0

PS 99 0,141 0 93 0,147 0 74 0,166 0 73 0,167 0
DIS2+PS 87 0,153 0 77 0,163 0 25 0,215 0 68 0,172 0
DIS5+PS 45 0,195 0 62 0,178 0 12 0,228 0 64 0,176 0
DIS10+PS 28 0,212 0 50 0,190 0 12 0,228 0 64 0,176 0

BB-Q3B

Base 57 0,183 0 54 0,186 0 43 0,197 0 31 0,209 0
DIS2 38 0,202 0 28 0,212 0 6 0,234 0 31 0,209 0
DIS5 6 0,234 0 15 0,225 0 6 0,234 0 27 0,213 0
DIS10 2 0,238 0 16 0,224 0 5 0,235 0 21 0,219 0

PS 86 0,154 0 100 0,140 0 58 0,182 0 73 0,167 0
DIS2+PS 38 0,202 0 58 0,182 0 8 0,232 0 68 0,172 0
DIS5+PS 10 0,230 0 27 0,213 0 8 0,232 0 56 0,184 0
DIS10+PS 5 0,235 0 24 0,216 0 5 0,235 0 48 0,192 0

IS-Yices2

Base 54 143,0 43 57 163,0 20 49 115,0 76 41 112,0 87
DIS2 62 104,0 74 47 156,0 37 32 70,0 138 34 53,0 153
DIS5 61 13,0 166 35 117,0 88 27 7,0 206 36 32,0 172
DIS10 46 0,0 194 36 91,0 113 19 0,0 221 38 24,0 178

PS 81 92,0 67 109 81,0 50 72 79,0 89 90 33,0 117
DIS2+PS 87 71,0 82 100 58,0 82 46 42,0 152 88 9,0 143
DIS5+PS 83 8,0 149 80 31,0 129 45 3,0 192 88 6,0 146
DIS10+PS 74 0,0 166 71 17,0 152 27 0,0 213 88 6,0 146

that is relatively complete, we expected the interval template
to have a weaker strength than other templates.

Upon examining the instances, we find that the reason for
the superior performance of interval is due to the nature of the
bit-vector theory. This theory faithfully models machine integer
semantics, including integer overflow. However, the presence
of arithmetic overflow may lead to the loss of precision.
Specifically, expressions in other templates (e.g., x+ y) can
overflow, resulting in a value of ⊤ in the sense of abstract
interpretation. While it is possible to prevent overflows in the
templates by encoding additional constraints, such constraints
restrict the search space and, thus, affect the completeness of
the template-based approach.

Second, on average, the interval, zone, octagon, polyhedron
templates only verify 60, 52, 48, and 33 instances, respectively.
After manual inspection of the failed instances, we find that the
limited expressiveness of the templates is the main reason for
the failures. For example, the benchmarks from the multi-phase
dataset [68] require disjunctive invariants. Besides, several
benchmarks require invariants with bit-wise operations, which
may not not expressible in the basic templates.

Effectiveness of Precision-Enhancing Strategies (RQ1.2).
We continue to examine the effectiveness of the two optimiza-
tion strategies (§ IV-A) for potentially enhancing the precision
of the basic templates, by evaluating four variants of EAGLE:

• EAGLE-Base: the default configuration that uses the basic
templates (same as the previous experiment);

• EAGLE-DISk: the variant augmenting the basic templates
via disjunctive completion, where k is the number of
disjuncts in the disjunctive templates;

• EAGLE-PS: the variant that uses the property strengthening
strategy;

• EAGLE-DISk + PS: the variant using both of the two
optimization strategies. We first apply the disjunctive
completion, followed by the property strengthening.

Table VI displays the number of verified instances for the
four variants. The table showcases the results of three solvers
that exhibit relatively strong performance across three cate-
gories of constraint solving approaches: quantifier instantiation
(QI-Z3), bit blasting (BB-Q3B), and iterative synthesis (IS-
Yices2). We have the following key observations.

First, with the enhanced expressiveness of the templates,
disjunctive completion can handle some specific cases (e.g.,
using the interval template and IS-Yices2 solver). However, this
comes at the cost of efficiency. After using the strategy, EAGLE-
DIS2 verifies an average of 6 ,29 ,3 and 15 fewer instances for
interval, octagon, polyhedron and zone, respectively than the
Base. When the number of k increases, the overhead increases
significantly. When setting k = 10, the number of verified
instances reduce by 15.0%− 77.9%, hampering the usability
of the template-based approach.

Second, using the property strengthening strategy, EAGLE-
PS verifies an average of 28, 48, 20, and 45 more instances for
interval, zone, octagon, and polyhedron, respectively. The over-
head incurred by using the property strengthening optimization
is significantly less than that of the disjunctive completion
strategy. The primary factor contributing to this difference is
that although the property strengthening optimization does
increase the size of the translated constraint, it does not
introduce any additional variables into the constraint.

Third, choosing property strengthening and disjunctive

PW_int PW_oct PW_poly PW_zone int oct poly zone
Template

BB_caqe

BB_cd15

BB_lgl

BB_mc

BB_q3b

IS_btor

IS_cvc4

IS_msat

IS_yices

QI_bitwuzla

QI_cvc5

QI_yices2

QI_z3

So
lv

er

4.7% 0.7% 0.0% 2.4% 0.0% 0.0% 0.0% 0.0%

0.6% 0.0% 0.1% 6.1% 8.3% 4.6% 0.8% 19.6%

0.4% 0.0% 0.1% 6.1% 7.5% 4.6% 0.8% 18.8%

0.4% 0.0% 0.1% 6.1% 7.1% 5.0% 0.8% 18.8%

7.4% 2.9% 23.9% 15.1% 35.8% 24.2% 30.4% 41.7%

16.9% 9.6% 35.8% 24.6% 20.0% 16.7% 35.8% 30.0%

22.6% 13.9% 37.2% 30.4% 20.0% 18.8% 36.7% 31.2%

19.2% 10.4% 36.7% 32.6% 22.1% 17.5% 37.5% 35.8%

33.9% 16.4% 36.7% 34.9% 33.8% 30.0% 37.5% 45.4%

20.4% 10.4% 16.9% 21.7% 17.1% 17.9% 32.5% 24.6%

2.6% 0.0% 0.0% 6.4% 37.5% 14.2% 0.0% 35.4%

30.1% 15.3% 21.9% 25.3% 34.2% 30.4% 26.7% 43.8%

20.3% 7.6% 31.9% 25.6% 31.0% 25.0% 33.5% 34.2%

Verified Rate Heatmap (only PS)

0.0

0.1

0.2

0.3

0.4

(a) Verified rate of the different solving strategies

PW_int PW_oct PW_poly PW_zone int oct poly zone
Template

BB_caqe

BB_cd15

BB_lgl

BB_mc

BB_q3b

IS_btor

IS_cvc4

IS_msat

IS_yices

QI_bitwuzla

QI_cvc5

QI_yices2

QI_z3

So
lv

er

252.7 273.9 300.0 255.9 8.1 13.6 8.3 8.8

299.2 280.4 299.7 279.8 260.6 288.8 297.6 243.7

299.2 280.4 299.7 279.8 264.8 289.3 298.2 251.2

299.1 280.4 299.7 279.8 269.2 288.2 298.1 250.8

35.1 36.7 32.0 33.6 19.1 30.5 30.0 21.3

245.2 250.9 192.3 215.3 196.3 214.6 188.7 188.0

223.6 239.6 187.3 186.6 171.3 208.1 183.7 161.7

226.1 246.9 185.8 186.3 154.0 207.0 178.6 141.3

195.2 233.6 185.4 174.4 102.2 154.5 152.0 97.1

27.8 29.9 30.4 25.6 27.3 30.3 28.1 26.6

33.8 33.6 34.9 30.7 14.7 32.2 36.7 22.0

24.9 28.0 26.4 21.6 16.8 20.3 26.2 16.0

136.4 145.5 110.6 120.8 85.9 121.8 106.5 92.4

Average Time Heatmap (only PS)

50

100

150

200

250

300

(b) Average time of the different solving strategies

Fig. 4: Comparison of all the constraint solving engines and eight typical invariant templates with property strengthening (We
omit the abbreviation “PS” in the figure).

completion together gains little improvement compared to using
property strengthening alone. For example, EAGLE DIS2 + PS
solves fewer instances in almost all cases of the different
templates and constraint solving engines as compared with PS.

Overall, we find that both the strategies can improve the
successful rates of verification. The property strengthening
strategy demonstrates better performance in our benchmarks.
Besides, we remark that this paper only employs a simple
inductive strengthening strategy that directly uses sub-formulas
in the verification condition (§ II-B). We anticipate that the
this optimization and its advanced variants be promising for
the template-based verification of bit-vector programs.

Impact of Constraint Solving Engines (RQ1.3). Next,
we compare the constraint solving strategies in Table IV.
We use the four basic invariant templates and their property
strengthening and disjunctive completion (with two clauses
in disjunctive template) variants as a case study. Figure 4
summarizes the key metrics obtained from our evaluation,
which present several performance trends.

First, in the bit-blasting category, the QBF and SAT-based
solvers underperform compared to the solvers in the quantifier
instantiation category (e.g., QI-Z3) and the iterative synthesis
category (e.g., IS-Yices). For example, BB-caqe solves 23
instances using the interval template with disjunctive comple-
tion, which is fewer than most of the quantifier instantiation-
based solvers. We find the the main performance bottleneck of
the SAT-based solvers is the quantifier elimination algorithm,
which can be much more expensive than SAT solving. However,
we believe that there is significant room for improvement in
the QBF-based solvers, as demonstrated by the competitive
performance of the BDD-based solver Q3B [58], which uses
several simplifications and approximations specially designed
for quantified bit-vectors.

Second, although the quantifier instantiation approach demon-

strates favorable performance on numerous instances, it is
worth noting that we have observed certain limitations. For
instance, in several formulas, QI-Z3 returns an “unknown”
result within a relatively short time, rather than attempting to
solve until reaching the time limit. Despite the decidability
of the theory of quantified bit-vectors, modern SMT solvers
may exhibit such behavior due to sophisticated heuristics
and implementation details. We are actively engaging with
the developers to investigate the underlying causes, such as
potential incompleteness bugs within the solver.

Third, in general, there is no definitive winner in terms
of solving performance among the solvers. Certain solvers
exhibit superior performance on certain benchmark instances.
Overall, several solvers produce similar results (QI-Z3, QI-
Yices2) for most of the templates. Thus, a promising direction is
to automatically select the constraint solving engine according
to problem’s features.

B. Comparison with Existing Invariant Generation Techniques
(RQ2)

In this section, we evaluate the effectiveness of EAGLE by
comparing it against three different approaches in Table V,
namely Spacer, Eldarica, and CVC5Sy. We use the results
of the configuration of EAGLE that verifies most instances in
the previous experiments, i.e, i.e., EAGLE-Zone-PS-IS-Yices2
(zone template augmented with property strengthening, using
IS-Yices2 as the constraint solver). Table VII compares the
number of verified and timeout instances. Figure 5 illustrates
the distribution of verified instances among the tools. We
summarize the key findings below.

First, EAGLE is capable of uniquely verifying 2, 46, 43
instances that cannot be verified by Eldarica, Spacer, and
CVC5Sy, respectively. This demonstrates that the template-
based approach used in EAGLE is effective and complements
the existing invariant inference approaches of these tools.

Eldarica

CV
C5
sy

Spacer

Eagle

45

20 0

1

35 16 1

12 32

2 29 11

0 35

0

Fig. 5: Venn diagram illustrating the distribution of verified
instances among the four tools.

TABLE VII: Comparison of EAGLE-Zone-IS-QI-Yices2 and
the other three invariant generation tools (“Failed” refers to
parsing error, out of memory, crash, and so forth).

Prover Verified Failed Timeout Avg. time

CVC5sy 158 82 0 2.86
Eldarica 190 8 42 62.90
Spacer 92 14 134 182.10
EAGLE 109 87 44 97.08

Second, Eldarica has the highest number of instances verified
among the four tools. Its good performance follows from
the highly optimized features such as intepolation for bit-
vectors [55].

Third, on average, CVC5Sy outperforms the other three tools
in efficiency. Notably, nearly all benchmarks are either verified
or prematurely terminated (designated as “unknown”) within a
short time, which is related to the specific implementation of
the tool and is worth further investigation. CVC5sy combines
several novel bounded term enumeration strategies for smart
and fast enumeration of invariants. However, it is worth noting
that the trade-off for its fast enumeration strategy is a potential
sacrifice in completeness [39].

Overall, we believe that these techniques are complementary
in terms of verification capability, and there is much room in
improving the accuracy and efficiency of EAGLE. We discuss
a few possible directions in § V-C.

C. Discussion

Summary of Evaluation. From our experiments, we have
the following observations:

• Among the four basic templates, we have the counter-
intuitive observation that the weakest template of intervals
outperforms other templates. This may be due to the fact
that overflows in other templates are not well-handled and
simply over-approximated to ⊤.

• Among the template precision-enhancing strategies, we
find that our simple property strengthening performs quite
well in the experiments, while the disjunctive completion
may not pay off. Since disjunction mostly timeout, this

suggests that an important improvement is to devise better
algorithms for disjunction.

• Among different constraint solving engines, we observe
that the quantifier instantiation and the iterative syntheis
approaches perform better than the bit-blasting approach.
However, there is no single best constraint solver.

• Among the comparison with other invariant generation
methods for bit-vectors, we find the effectiveness of
EAGLE which uniformally handle 40+ instances compared
to Spacer and CVC5Sy. Note that Eldarica performs
better than ours, but it is highly optimized for bit-vector,
while our approach is coarse and has not incorporated
optimization yet.

Thus, our results suggest the effectiveness and efficiency of
the template-based approach for verifying bit-vector programs.

Future Work. We discuss a few directions for advancing
the template-based verification of bit-vector programs.

Optimizing Invariant Templates. Optimizing the design of
templates is crucial because it directly impacts the precision of
the obtained invariants in the template-based approach. First,
the superior performance of interval templates suggests that
a major enhancement would be to refine the treatment of
the wrap-around behavior in templates other than intervals.
Second, beyond the simple property strengthening optimization
(§ IV-A), it would be promising to design new strategies
for “refining” an existing template, e.g., borrowing the idea
of iterative strengthening or weakening [62, 67]. Finally, in
alignment with previous work, we require fixing a pre-defined
template, which may limit expressiveness. Thus, automatically
searching through the space of candidate templates is important
for improving the usability of the approach.

Speeding up Constraint Solving. There are several avenues
to explore for accelerating constraint solving. First, numer-
ous developments have been made concerning the quantifier
instantiation approach [49, 56–58]. Although designed for
general quantified constraints, they have shown promising
performance in our experiments. Nonetheless, they also exhibit
certain undesirable behaviors such as returning an “unknown”
result in a relatively short time. Therefore, to enhance the
stability of the quantifier instantiation heuristics [70], further
improvements should be pursued for bit-vector arithmetic.
Second, regarding the bit-blasting approach, it is important
to devise new simplifications and reductions, which can
be applied before [71, 72], during [73], and after the bit-
blasting phase. Third, for the iterative synthesis approach,
optimizing both the learner and verifier is crucial. This can
be achieved by developing better strategies for generating
candidates (e.g., employing constrained sampling heuristics)
and generalizing from counterexamples (e.g., using variants
of model-based projection). Finally, a possible direction is
to identify prominent features that influence the performance
and choose the best constraint solving engine that match the
features of a program [74].

Combination with other Verification Techniques. The
template-based invariant generation approach can be effectively

combined with other verification techniques to address the
limitations posed by the expressiveness of the templates. First,
k-induction is a powerful methodology readily applicable to bit-
vector constraints.8 Several attempts have been made to enhance
k-induction through the use of auxiliary invariants [46, 75, 76],
which can be generated using various techniques, including
the template-based approach. Second, there have been a
few studies that combine the template-based approach and
predicate abstraction [77, 78], which could be adapted to
bit-vector programs. Third, a recent work [10] combines
recurrence analysis and template-based approach, building on
real arithmetic. A promising direction to explore is to adapt
this technique for bit-vector arithmetic. One possible approach
involves translating bit-vector constraints into linear constraints
using the techniques in [79], and subsequently applying the
technique in [10].

Modeling other Types of Programs. In addition to modeling
machine integers, the bit-vector theory can also be utilized to
model other types of language constructs. First, it is well-known
that we can use bit-vectors to encode floating-point numbers and
bounded-length strings [80]. Second, to handle uninterpreted
functions and arrays, we may apply the techniques proposed
in [43, 49] to eliminate these constructs and subsequently
use the established methods for bit-vector arithmetic. By
employing these techniques, we can extend the applicability of
the template-based approach to a broader range of programs
and verification scenarios.

VI. RELATED WORK

Template-based Invariant Generation. This approach
begins with a template with unknown quantities and finds
invariants by solving constraints on the unknowns. Most
existing methods operate over integer or real arithmetic, either
for generating linear invariants [5–7, 18–21, 81, 82] or non-
linear invariants [22–26, 26–30]. To date, there has been limited
research on extending the template-based approach to bit-vector
programs. Besides, existing studies rely on domain-specific
reductions (such as Farkas’ Lemma for linear arithmetic [7]
and Ackermann’s reduction for uninterpreted functions [43])
to simplify the constraints. However, these reductions are not
applicable to bit-vectors. Consequently, solving quantified bit-
vector constraints becomes necessary. In this work, we perform
a comprehensive review of existing techniques for solving such
constraints. Furthermore, we present the first quantitative study
on the performance of different constraint solving strategies.

Bit-Precise Invariant Generation. Several SMT-based
model checking algorithms have been extended to support
bit-vector arithmetic, such as IC3/PDR [9, 34–37] and CE-
GAR [8, 33, 55]. These algorithms often rely on interpolant
generation, e.g., for approximating image computation and
generating lemmas for refinement. However, interpolation for
bit-vectors is not well-supported in many modern SMT solvers.
The abstract interpretation community has proposed various

8Usually, implementing k-induction only requires a decision procedure for
checking the satisfiability of quantifier-free formulas.

abstract domains for bit-vector arithmetic, such as the strided
intervals [83] and the wrapped intervals [84]. Unfortunately,
abstract interpretation is often incomplete. SyGuS has also
been used to generate inductive invariants using either a user-
supplied grammar [39] or an automatically generated one [48].
However, existing SyGuS-based algorithms mainly focus on
integer or real arithmetic.

Complete Abstract Interpretation. The template-based
invariant generation has a connection with the problem of
making abstract interpretation complete [31, 85–87]. This
problem was initially proposed by Cousot and Cousot [88].
Giacobazzi et. al. [31] provide a constructive characterization
of complete abstract interpretation in the general case. Reps
et. al. [3] introduce the problem of symbolic abstraction,
which computes the best (most precise) abstraction of a
formula in a given abstract domain [3, 89, 90]. Under certain
conditions, symbolic abstraction can produce the most precise
inductive invariants, thereby facilitating relative completeness.
Existing symbolic abstraction algorithms, however, are not
goal-directed. In comparison, the template-based approach may
not necessarily compute the most precise invariants, as it only
needs to compute a sufficient one for completing the proof.

Empirical Evaluation of Program Analyzers. There have
been several empirical evaluations of different program analysis
techniques, such as taint analysis [91–93], k-induction [94], and
IC3/PDR [95]. However, to the best of our knowledge, there
is a lack of systematic evaluation specifically focusing on the
template-based invariant generation for bit-vector programs. In
this work, we present empirical evidence on the effectiveness of
the adaption and study the precision and performance trade-offs
in this setting.

VII. CONCLUSION

The template-based approach to invariant generation has
been widely studied for integer and real arithmetic. In this
work, we present the first comprehensive investigation into
its effectiveness when applied to bit-vector programs. We
examine the performance of different templates and constraint
solving strategies, as well as the effectiveness of the template-
based approach compared to alternative techniques. Our work
presents quantitative evidence on the promises of template-
based verification for bit-vector programs and suggests potential
avenues for future research.

ACKNOWLEDGMENT

We thank the anonymous reviewers for the valuable feed-
back. The authors are supported by the National Key R&D
Program of China (under Grant No. 2022YFB4501903), the
National Natural Science Foundation of China (under Grant
No. 62172271, 62272400, and 62132014), and the Qizhen
Scholar Foundation of Zhejiang University. Hongfei Fu is the
corresponding author.

REFERENCES
[1] P. Cousot and R. Cousot, “Static determination of dynamic properties

of programs,” in Proceedings of the 2nd International Symposium on
Programming, Paris, France. Dunod, 1976.

[2] P. Cousot and N. Halbwachs, “Automatic discovery of linear restraints
among variables of a program,” in Proceedings of the 5th ACM
SIGACT-SIGPLAN Symposium on Principles of Programming Languages
(POPL’78).

[3] T. Reps, M. Sagiv, and G. Yorsh, “Symbolic implementation of the best
transformer,” in Verification, Model Checking, and Abstract Interpretation
(VMCAI’04).

[4] Y. Li, A. Albarghouthi, Z. Kincaid, A. Gurfinkel, and M. Chechik,
“Symbolic optimization with smt solvers,” in Proceedings of the 41st
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL’14).

[5] M. A. Colón, S. Sankaranarayanan, and H. B. Sipma, “Linear invariant
generation using non-linear constraint solving,” in International Confer-
ence on Computer Aided Verification (CAV’03).

[6] S. Sankaranarayanan, H. B. Sipma, and Z. Manna, “Constraint-based
linear-relations analysis,” in International Static Analysis Symposium
(SAS’04).

[7] ——, “Scalable analysis of linear systems using mathematical program-
ming,” in Proceedings of the 6th International Conference on Verification,
Model Checking, and Abstract Interpretation (VMCAI’05).

[8] H. Hojjat and P. Rümmer, “The eldarica horn solver,” in 2018 Formal
Methods in Computer Aided Design (FMCAD’18).

[9] A. Cimatti, A. Griggio, S. Mover, and S. Tonetta, “IC3 modulo theories
via implicit predicate abstraction,” in International Conference on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS’14).

[10] J. Breck, J. Cyphert, Z. Kincaid, and T. W. Reps, “Templates and
recurrences: better together,” in Proceedings of the 41st ACM SIG-
PLAN International Conference on Programming Language Design and
Implementation (PLDI’20).

[11] Z. Kincaid, J. Cyphert, J. Breck, and T. W. Reps, “Non-linear reasoning
for invariant synthesis,” Proc. ACM Program. Lang., vol. 2, no. POPL,
2018.

[12] L. Kovács and T. Jebelean, “Automated generation of loop invariants by
recurrence solving in theorema,” in Proceedings of the 6th International
Symposium on Symbolic and Numeric Algorithms for Scientific Computing
(SYNASC’04).

[13] Z. Kincaid, J. Breck, A. F. Boroujeni, and T. W. Reps, “Compositional
recurrence analysis revisited,” in Proceedings of the 38th ACM SIGPLAN
Conference on Programming Language Design and Implementation
(PLDI’17).

[14] X. Si, A. Naik, H. Dai, M. Naik, and L. Song, “Code2inv: A deep
learning framework for program verification,” in International Conference
on Computer Aided Verification (CAV’20).

[15] P. Garg, C. Löding, P. Madhusudan, and D. Neider, “Ice: A robust
framework for learning invariants,” in International Conference on
Computer Aided Verification (CAV’14).

[16] R. Sharma, A. V. Nori, and A. Aiken, “Interpolants as classifiers,” in
International Conference on Computer Aided Verification (CAV’12).

[17] R. Xu, F. He, and B.-Y. Wang, “Interval counterexamples for loop
invariant learning,” in Proceedings of the 28th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE’20).

[18] S. d. Oliveira, S. Bensalem, and V. Prevosto, “Synthesizing invariants
by solving solvable loops,” in International Symposium on Automated
Technology for Verification and Analysis (ATVA’17).

[19] K. Chatterjee, P. Novotny, and D. Zikelic, “Stochastic invariants for
probabilistic termination,” in Proceedings of the 44th ACM SIGPLAN
Symposium on Principles of Programming Languages (POPL’17).

[20] J.-P. Katoen, A. K. McIver, L. A. Meinicke, and C. C. Morgan, “Linear-
invariant generation for probabilistic programs,” in International Static
Analysis Symposium (SAS’10).

[21] A. Gupta and A. Rybalchenko, “Invgen: An efficient invariant generator,”
in International Conference on Computer Aided Verification (CAV’09).

[22] D. Kapur, “Automatically generating loop invariants using quantifier
elimination,” in Dagstuhl Seminar Proceedings. Schloss Dagstuhl-
Leibniz-Zentrum für Informatik, 2006.

[23] K. Chatterjee, H. Fu, A. K. Goharshady, and E. K. Goharshady, “Poly-
nomial invariant generation for non-deterministic recursive programs,”
in Proceedings of the 41st ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI’20).

[24] Y.-F. Chen, C.-D. Hong, B.-Y. Wang, and L. Zhang, “Counterexample-
guided polynomial loop invariant generation by Lagrange interpolation,”
in Proceedings of the International Conference on Computer Aided
Verification (CAV’15).

[25] E. Hrushovski, J. Ouaknine, A. Pouly, and J. Worrell, “Polynomial

invariants for affine programs,” in Proceedings of the 33rd Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS’18).

[26] A. Humenberger, M. Jaroschek, and L. Kovács, “Automated generation
of non-linear loop invariants utilizing hypergeometric sequences,” in
Proceedings of the 2017 ACM on International Symposium on Symbolic
and Algebraic Computation (ISSAC’17).

[27] Y. Feng, L. Zhang, D. N. Jansen, N. Zhan, and B. Xia, “Finding
polynomial loop invariants for probabilistic programs,” in International
Symposium on Automated Technology for Verification and Analysis
(ATVA’17).

[28] S. d. Oliveira, S. Bensalem, and V. Prevosto, “Polynomial invariants by
linear algebra,” in International Symposium on Automated Technology
for Verification and Analysis (ATVA’16).

[29] A. Adjé, P.-L. Garoche, and V. Magron, “Property-based polynomial
invariant generation using sums-of-squares optimization,” in International
Static Analysis Symposium (SAS’15).

[30] S. Sankaranarayanan, H. B. Sipma, and Z. Manna, “Non-linear loop
invariant generation using gröbner bases,” in Proceedings of the 31st ACM
SIGPLAN-SIGACT symposium on Principles of programming languages
(POPL’04).

[31] R. Giacobazzi and F. Ranzato, “Completeness in abstract interpretation:
A domain perspective,” in International Conference on Algebraic
Methodology and Software Technology. Springer, 1997.

[32] R. Giacobazzi, F. Ranzato, and F. Scozzari, “Making abstract interpreta-
tions complete,” Journal of the ACM (JACM’00).

[33] P. Backeman, P. Rümmer, and A. Zeljić, “Interpolating bit-vector formulas
using uninterpreted predicates and presburger arithmetic,” Formal methods
in system design (FMSD’21).

[34] Y.-S. Ho, A. Mishchenko, and R. Brayton, “Property directed reachability
with word-level abstraction,” in 2017 Formal Methods in Computer Aided
Design (FMCAD’17).

[35] H. Zhang, A. Gupta, and S. Malik, “Syntax-guided synthesis for lemma
generation in hardware model checking,” in International Conference on
Verification, Model Checking, and Abstract Interpretation (VMCAI’21).

[36] A. Goel and K. Sakallah, “Model checking of verilog RTL using IC3
with syntax-guided abstraction,” in NASA Formal Methods Symposium
(NFM’19).

[37] S. Lee and K. A. Sakallah, “Unbounded scalable verification based on
approximate property-directed reachability and datapath abstraction,” in
International Conference on Computer Aided Verification (CAV’14).

[38] A. Abate, C. David, P. Kesseli, D. Kroening, and E. Polgreen, “Coun-
terexample guided inductive synthesis modulo theories,” in Computer
Aided Verification: 30th International Conference (CAV’18).

[39] A. Reynolds, H. Barbosa, A. Nötzli, C. Barrett, and C. Tinelli, “cvc4sy:
smart and fast term enumeration for syntax-guided synthesis,” in
Computer Aided Verification: 31st International Conference (CAV’19).

[40] H.-Y. Chen, C. David, D. Kroening, P. Schrammel, and B. Wachter,
“Bit-precise procedure-modular termination analysis,” ACM Transactions
on Programming Languages and Systems (TOPLAS’17).

[41] S. Falke, D. Kapur, and C. Sinz, “Termination analysis of imperative
programs using bitvector arithmetic,” in Verified Software: Theories,
Tools, Experiments (VSTTE’12).

[42] B. Cook, D. Kroening, P. Rümmer, and C. M. Wintersteiger, “Ranking
function synthesis for bit-vector relations,” Formal methods in system
design (FMSD’13).

[43] D. Beyer, T. A. Henzinger, R. Majumdar, and A. Rybalchenko, “Invari-
ant synthesis for combined theories,” in International Conference on
Verification, Model Checking, and Abstract Interpretation (VMCAI’07).

[44] D. Larraz, E. Rodrı́guez-Carbonell, and A. Rubio, “SMT-based array
invariant generation,” in International Conference on Verification, Model
Checking, and Abstract Interpretation (VMCAI’13).

[45] J. Katoen, A. McIver, L. Meinicke, and C. C. Morgan, “Linear-invariant
generation for probabilistic programs: - automated support for proof-based
methods,” in Static Analysis: 17th International Symposium (SAS’10).

[46] M. Brain, S. Joshi, D. Kroening, and P. Schrammel, “Safety verification
and refutation by k-invariants and k-induction,” in Static Analysis: 22nd
International Symposium (SAS’15).

[47] S. Gulwani, S. Srivastava, and R. Venkatesan, “Program analysis as
constraint solving,” in Proceedings of the 29th ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI’08).

[48] G. Fedyukovich, S. J. Kaufman, and R. Bodik, “Sampling invariants
from frequency distributions,” in 2017 Formal Methods in Computer
Aided Design (FMCAD’17).

[49] C. M. Wintersteiger, Y. Hamadi, and L. De Moura, “Efficiently solving

quantified bit-vector formulas,” Form. Methods Syst. Des. (FMSD’13).
[50] K. Hoder and N. Bjørner, “Generalized property directed reachability,”

in Proceedings of the 15th International Conference on Theory and
Applications of Satisfiability Testing (SAT’12).

[51] A. R. Bradley, “Understanding IC3,” in International Conference on
Theory and Applications of Satisfiability Testing (SAT’12).

[52] M. Heizmann, J. Hoenicke, and A. Podelski, “Software model checking
for people who love automata,” in International Conference on Computer
Aided Verification (CAV’13).

[53] S. Sankaranarayanan, F. Ivančić, I. Shlyakhter, and A. Gupta, “Static
analysis in disjunctive numerical domains,” in Proceedings of the 13th
International Conference on Static Analysis (SAS’06).

[54] H. Peleg, S. Shoham, and E. Yahav, “D3: Data-driven disjunctive
abstraction,” in International Conference on Verification, Model Checking,
and Abstract Interpretation (VMCAI’16).

[55] P. Backeman, P. Rummer, and A. Zeljic, “Bit-vector interpolation and
quantifier elimination by lazy reduction,” in 2018 Formal Methods in
Computer Aided Design (FMCAD’18).

[56] M. Preiner, A. Niemetz, and A. Biere, “Counterexample-guided model
synthesis,” in Tools and Algorithms for the Construction and Analysis of
Systems (TACAS’17).

[57] A. Niemetz, M. Preiner, A. Reynolds, C. Barrett, and C. Tinelli, “Solving
quantified bit-vectors using invertibility conditions,” in International
Conference on Computer Aided Verification (CAV’18).

[58] M. Jonáš and J. Strejček, “Solving quantified bit-vector formulas
using decision diagrams,” in International Conference on Theory and
Applications of Satisfiability Testing (TACAS’16).

[59] S. Kong, A. Solar-Lezama, and S. Gao, “Delta-decision procedures for
exists-forall problems over the reals,” in Computer Aided Verification:
30th International Conference (CAV’18).

[60] A. Miné, “A new numerical abstract domain based on difference-bound
matrices,” in Proceedings of the Second Symposium on Programs As
Data Objects, 2001.

[61] A. Miné, “The octagon abstract domain,” Higher Order Symbol. Comput.,
2006.

[62] I. Dillig, T. Dillig, B. Li, and K. McMillan, “Inductive invariant
generation via abductive inference,” in Proceedings of the 2013 ACM
SIGPLAN international conference on Object oriented programming
systems languages & applications (OOPSLA’13).

[63] S. Padhi, R. Sharma, and T. Millstein, “Loopinvgen: A loop invariant gen-
erator based on precondition inference,” arXiv preprint arXiv:1707.02029,
2017.

[64] A. Niemetz and M. Preiner, “Bitwuzla at the SMT-COMP 2020,” arXiv
preprint arXiv:2006.01621, 2020.

[65] S. Graham-Lengrand, “Yices-QS 2022, an extension of yices for
quantified satisfiability,” 2022.

[66] B. Dutertre, “Solving exists/forall problems with Yices,” in Workshop
on satisfiability modulo theories, 2015.

[67] S. Lin, J. Sun, H. Xiao, Y. Liu, D. Sanán, and H. Hansen, “Fib:
squeezing loop invariants by interpolation between forward/backward
predicate transformers,” in International Conference on Automated
Software Engineering (ASE’17).

[68] D. Riley and G. Fedyukovich, “Multi-phase invariant synthesis,” in
Proceedings of the 30th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE’22).

[69] R. Sharma, A. V. Nori, and A. Aiken, “Bias-variance tradeoffs in program
analysis,” in Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL’14).

[70] K. R. M. Leino and C. Pit-Claudel, “Trigger selection strategies
to stabilize program verifiers,” in Computer Aided Verification: 28th
International Conference (CAV’16).

[71] A. Nadel, “Bit-vector rewriting with automatic rule generation,” in
Proceedings of the 16th International Conference on Computer Aided
Verification (CAV’14).

[72] M. Jonáš and J. Strejček, “On simplification of formulas with uncon-
strained variables and quantifiers,” in International Conference on Theory
and Applications of Satisfiability Testing (SAT’17).

[73] J. P. Inala, R. Singh, and A. Solar-Lezama, “Synthesis of domain specific
cnf encoders for bit-vector solvers,” in Theory and Applications of
Satisfiability Testing (SAT’16).

[74] M. N. Mansur, B. Mariano, M. Christakis, J. A. Navas, and V. Wüstholz,
“Automatically tailoring abstract interpretation to custom usage scenarios,”
in Computer Aided Verification: 33rd International Conference (CAV’21).

[75] D. Beyer, M. Dangl, and P. Wendler, “Boosting k-induction with
continuously-refined invariants,” in Computer Aided Verification: 27th
International Conference (CAV’15).

[76] A. Gacek, J. Backes, M. Whalen, L. Wagner, and E. Ghassabani, “The
jkind model checker,” in Computer Aided Verification: 30th International
Conference (CAV’18).

[77] S. Gulwani, S. Srivastava, and R. Venkatesan, “Constraint-based invariant
inference over predicate abstraction,” in Verification, Model Checking,
and Abstract Interpretation, 10th International Conference (VMCAI’09).

[78] S. Srivastava and S. Gulwani, “Program verification using templates
over predicate abstraction,” in Proceedings of the 30th ACM SIGPLAN
Conference on Programming Language Design and Implementation
(PLDI’09).

[79] T. Okudono and A. King, “Mind the gap: Bit-vector interpolation
recast over linear integer arithmetic,” in Tools and Algorithms for the
Construction and Analysis of Systems (TACAS’20).

[80] R. Axelsson, K. Heljanko, and M. Lange, “Analyzing context-free
grammars using an incremental SAT solver,” in Automata, Languages
and Programming: 35th International Colloquium (ICALP’08).

[81] Y. Ji, H. Fu, B. Fang, and H. Chen, “Affine loop invariant generation
via matrix algebra,” in Computer Aided Verification - 34th International
Conference (CAV’22), S. Shoham and Y. Vizel, Eds.

[82] H. Liu, H. Fu, Z. Yu, J. Song, and G. Li, “Scalable linear invariant
generation with Farkas’ lemma,” Proc. ACM Program. Lang., vol. 6, no.
OOPSLA2, 2022.

[83] G. Balakrishnan and T. Reps, “Analyzing memory accesses in x86
executables,” in Compiler Construction: 13th International Conference
(CC’04).

[84] G. Gange, J. A. Navas, P. Schachte, H. Søndergaard, and P. J. Stuckey,
“Interval analysis and machine arithmetic: Why signedness ignorance
is bliss,” ACM Transactions on Programming Languages and Systems
(TOPLAS’15).

[85] R. Bruni, R. Giacobazzi, R. Gori, I. Garcia-Contreras, and D. Pavlovic,
“Abstract extensionality: on the properties of incomplete abstract inter-
pretations,” Proceedings of the ACM on Programming Languages, vol. 4,
no. POPL, 2019.

[86] F. Bonchi, P. Ganty, R. Giacobazzi, and D. Pavlovic, “Sound up-to
techniques and complete abstract domains,” in Proceedings of the 33rd
Annual ACM/IEEE Symposium on Logic in Computer Science (LICS’18).

[87] R. Bruni, R. Giacobazzi, R. Gori, and F. Ranzato, “A logic for locally
complete abstract interpretations,” in 2021 36th Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS’21).

[88] P. Cousot and R. Cousot, “Systematic design of program analysis frame-
works,” in Proceedings of the 6th ACM SIGACT-SIGPLAN symposium
on Principles of programming languages (POPL’79).

[89] A. Thakur and T. Reps, “A method for symbolic computation of abstract
operations,” in Proceedings of the 24th International Conference on
Computer Aided Verification (CAV’12).

[90] P. Yao, Q. Shi, H. Huang, and C. Zhang, “Program analysis via efficient
symbolic abstraction,” Proc. ACM Program. Lang., vol. 5, no. OOPSLA,
2021.

[91] F. Pauck, E. Bodden, and H. Wehrheim, “Do android taint analysis
tools keep their promises?” in Proceedings of the 2018 26th ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (ESEC/FSE’18).

[92] L. Luo, F. Pauck, G. Piskachev, M. Benz, I. Pashchenko, M. Mory,
E. Bodden, B. Hermann, and F. Massacci, “Taintbench: Automatic real-
world malware benchmarking of Android taint analyses,” Empirical
Software Engineering (EMSE’22).

[93] L. Luo, E. Bodden, and J. Spath, “A qualitative analysis of Android taint-
analysis results,” in International Conference on Automated Software
Engineering (ASE’19).

[94] O. M. Alhawi, H. Rocha, M. R. Gadelha, L. C. Cordeiro, and
E. Batista, “Verification and refutation of c programs based on k-induction
and invariant inference,” International Journal on Software Tools for
Technology Transfer (STTT’21).

[95] D. Beyer and M. Dangl, “Software verification with PDR: Implementation
and empirical evaluation of the state of the art,” arXiv preprint
arXiv:1908.06271, 2019.

	Introduction
	Preliminaries
	Inductive Loop Invariant
	Template-based Invariant Generation

	Motivation
	Template-based Invariant Generation for Bit-Vectors
	Obstacles to Adopting the Template-based Approach

	Experimental Study Design
	Invariant Templates in Eagle
	Constraint Solving Engines in Eagle
	Other Invariant Generation Techniques
	Experimental Setup

	Results and Analysis
	Impact of Different Strategies (RQ1)
	Comparison with Existing Invariant Generation Techniques (RQ2)
	Discussion

	Related Work
	Conclusion

