
Program Analysis Combining Generalized Bit-Level and
Word-Level Abstractions
GUANGSHENG FAN, National University of Defense Technology, China

LIQIAN CHEN∗, National University of Defense Technology, China

BANGHU YIN, National University of Defense Technology, China

WENYU ZHANG, National University of Defense Technology, China

PEISEN YAO, State Key Laboratory of Blockchain and Data Security, China, Zhejiang University, China,

and Hangzhou High-Tech Zone (Binjiang) Institute of Blockchain and Data Security, China

JI WANG∗, National University of Defense Technology, China

Abstract interpretation is widely used to determine programs’ numerical properties. However, current abstract

domains primarily focus on mathematical semantics, which do not fully capture the complexities of real-world

programs relying on machine integer semantics and involving extensive bit-vector operations. This paper

presents a solution that combines a bit-level abstraction and a word-level abstraction to capture machine integer

semantics. First, we generalize the bit-level abstraction used in the Linux eBPF verifier for determining known

and unknown bits of real-world programs, by supplementing all required operations as a standard abstract

domain. Based on this abstraction, we design an abstract domain that is signedness-aware and simultaneously

retains both the above bit-level and the word-level bound information. These two levels of information

cooperate via a standard reduced product operation to improve analysis precision. We implement the proposed

domains in the Crab analyzer and the out-of-kernel eBPF verifier PREVAL. Experiments demonstrate their

effectiveness in analyzing SV-COMP benchmark programs, assisting hardware designs, and eBPF verification.

CCS Concepts: • Software and its engineering→ Automated static analysis.

Additional Key Words and Phrases: Abstract Interpretation, Range Analysis, Abstract Domain

ACM Reference Format:
Guangsheng Fan, Liqian Chen, Banghu Yin, Wenyu Zhang, Peisen Yao, and Ji Wang. 2025. Program Analysis

Combining Generalized Bit-Level and Word-Level Abstractions. Proc. ACM Softw. Eng. 2, ISSTA, Article IS-
STA030 (July 2025), 23 pages. https://doi.org/10.1145/3728905

1 INTRODUCTION
Abstract interpretation [7] based static analysis is widely used to determine the numerical properties

of programs and ensure program safety. The core element of this framework is the notion of abstract

∗
Liqian Chen and Ji Wang are the corresponding authors.

Authors’ Contact Information: Guangsheng Fan, State Key Laboratory of Complex & Critical Software Environment, College

of Computer Science and Technology, National University of Defense Technology, China, guangshengfan@nudt.edu.cn;

Liqian Chen, State Key Laboratory of Complex & Critical Software Environment, College of Computer Science and

Technology, National University of Defense Technology, China, lqchen@nudt.edu.cn; Banghu Yin, College of Systems

Engineering, National University of Defense Technology, China, bhyin@nudt.edu.cn; Wenyu Zhang, State Key Laboratory

of Complex & Critical Software Environment, College of Computer Science and Technology, National University of Defense

Technology, China, wenyuzhang08@nudt.edu.cn; Peisen Yao, State Key Laboratory of Blockchain and Data Security, China

and Zhejiang University, China and Hangzhou High-Tech Zone (Binjiang) Institute of Blockchain and Data Security, China,

pyaoaa@zju.edu.cn; Ji Wang, State Key Laboratory of Complex & Critical Software Environment, College of Computer

Science and Technology, National University of Defense Technology, China, wj@nudt.edu.cn.

This work is licensed under a Creative Commons Attribution 4.0 International License.

© 2025 Copyright held by the owner/author(s).

ACM 2994-970X/2025/7-ARTISSTA030

https://doi.org/10.1145/3728905

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA030. Publication date: July 2025.

https://doi.org/10.1145/3728905
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3728905

ISSTA030:2 Guangsheng Fan, Liqian Chen, Banghu Yin, Wenyu Zhang, Peisen Yao, and Ji Wang

domain, which can directly impact precision and efficiency. Over the years, various abstract domains

have been proposed, such as intervals [8], zones [39], octagons [40], polyhedra [9], etc. Based

on mathematical semantics, almost all these conventional domains utilize unbounded integers

with infinite precision to model integer program variables. Meanwhile, they usually only design

abstractions for arithmetic operations but have limited support for bit-vector operations [31].

However, real-world programs use integer types defined as bounded machine integers, i.e.,

bit-vectors, with finite precision. Machine integers can be represented as a circle, as in Fig. 1. By

drawing a straight line from the N pole and S pole, the circle is divided into two hemispheres: the

0-hemisphere, which ranges from the minimum unsigned integer 00...00(𝑢𝑚𝑖𝑛) to the maximum

signed integer 01...11(𝑠𝑚𝑎𝑥) clockwise, and the 1-hemisphere, which ranges from the minimum

signed integer 10...00(𝑠𝑚𝑖𝑛) to the maximum unsigned integer 11...11(𝑢𝑚𝑎𝑥) clockwise. Fig. 1 also

provides an example of 8-bit integers, where unsigned integer representations are shown in green

and signed integer representations in orange.

A comprehensive static analysis based onmachine integer semantics must address two challenges:

• Characterizing wrapped behaviors: Word-level arithmetic operations are inherently modular

under machine integer semantics. Hence, adding two positive signed integers can overflow,

yielding a negative value. Unfortunately, many existing abstract domains in program analysis

are limited to producing only positive results, thereby failing to capture such wrapped

behaviors. This oversight can lead to missed opportunities for detecting critical bugs. For

example, numerous CWEs are related to machine integer behaviors [10–18].

• Modelling bit-vector operations: Bit-vector operations are prevalent in real-world programs,

particularly in cryptographic applications and low-level embedded systems. Additionally,

when software analyzers are employed for hardware verification, the process often involves

translating Verilog RTL into corresponding C or LLVM programs [1, 43, 44, 58], which

frequently contain numerous bit-vector operations. The accuracy with which these operations

are modelled directly impacts the overall precision of the program analysis.

To address these challenges, there are two categories of techniques for designing abstract domains.

• One approach is to extend existing word-level abstractions to incorporate machine integer

semantics. This requires designing abstractions for bit-vector operations from an inherently

complex word-level perspective, such as the wrapped interval domain (wint) [21, 47]. How-
ever, the complexity of these algorithms led to undetected soundness bugs that persisted for

nearly a decade [32]. Furthermore, relying solely on interval abstraction can result in a loss

of precision, as this word-level approach captures only the properties of the entire bit vector,

neglecting the finer-grained properties of individual bits.

• Another approach is to augment conventional domains with modular arithmetic and apply

bit-level abstractions specifically for bit-vector operations. For instance, Astrée [4] extends

the interval domain with a modular component and employs a bitfield domain to analyze

bit-vector operations [41]. While this bit-level abstraction can be implemented efficiently, it

still cannot track precise bit-level information for general arithmetic operations, limiting its

precision in specific contexts.

The eBPF verifier the Linux kernel takes a step forward, combining both word-level and bit-

level abstractions to ensure eBPF program safety [60, 61]. The former includes four interval-like

abstractions, i.e., (un)signed 64/32-bit intervals, while the latter is bitwise and named tnum, which
determines known and unknown bits. The tnum abstraction is applied to bit-vector operations and

several arithmetic operations. However, there are still other word-level operations that it cannot deal

with, such as the division operation and the greater-than-condition judgment. Furthermore, since

the eBPF verifier is designed to track each path of the restricted loop-free program independently,

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA030. Publication date: July 2025.

Program Analysis Combining Generalized Bit-Level and Word-Level Abstractions ISSTA030:3

N

S
umin 00…00 11…11 umax

smax 01…11 10…00 smin

0-
hemisphere

1-
hemisphere

0 (0)

127 (127) 128 (-128)

255 (-1)

Fig. 1. Machine integer representation

Bit-vector

Bit-Level Word-Level

Arithmetic

Machine Integer

N

S
umin 00…00 11…11 umax

smax 01…11 10…00 smin

0-
hemisphere

1-
hemisphere

0 (0)

127 (127) 128 (-128)

255 (-1)
Fig. 2. Analysis Framework

the eBPF abstraction has neither join, meet, nor widening operations designed, which are important

for analyzing general real-world programs.

Inspired by the program analysis in the Linux eBPF verifier, this paper presents an efficient and

practical program analysis framework that combines word-level and bit-level abstractions for both

arithmetic and bit-vector operations, as shown in Fig. 2, in generic real-world programs.

• First, we generalize the tnum abstraction in the eBPF verifier by complementing all essential

domain operations, resulting in an independent domain tnum+ to evaluate generic real-

world programs, e.g., without the loop-free limitation. Our bit-level abstraction advances by

retaining known and unknown bits in each signedness case of a variable, considering the

features of machine integer distribution. As seen in Fig. 1, there is a significant difference

in integers located on both sides of the N (S) Pole and adjacent to it. Abstraction for these

integers using tnum+ may lead to many unknown bits, e.g., we cannot determine any bits for

a valuable 𝑣 ∈ {𝑢𝑚𝑖𝑛,𝑢𝑚𝑎𝑥}.
• Then, we propose a word-level abstraction that records the lower and upper bound of

the potential values also in each hemisphere, making it more precise than the existing

wint domain [21, 47], which combines the values in both signs. Meanwhile, our word-level

abstraction can play an equal role as the combination of the four interval-like abstractions in

the eBPF verifier.

• Finally, we design a domain named swb, which combines the above bit-level and word-level

abstractions. The combination is via a reduced product operation based on the key insight

that the upper (lower) abstraction at the word level for each sign is obtained by setting all

unknown bits to 1 (0). We further establish that this reduced product operation is standard,

as it is both sound and capable of computing the most precise abstraction at both the word

and bit levels for any program operation.

We have implemented the above abstract domains in the Crab library [28] and the Linux eBPF

verifier PREVAIL [23] which has recently developed to be the eBPF verifier for Windows [19]. Ex-

periments have shown the promising ability of our domains to analyze real-world C programs (with

loops), bit-vector dense programs translated from hardware verification [1], and eBPF programs. In

summary, we make the following main contributions:

• We generalize the tnum abstraction in the eBPF verifier to support real-world program

analysis.

• We propose an abstract domain named swb that retains both (1) known and unknown bits

at the bit-level and (2) interval bounds at the word-level in different hemispheres. They

cooperate by a proven standard of reduced product operation.

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA030. Publication date: July 2025.

ISSTA030:4 Guangsheng Fan, Liqian Chen, Banghu Yin, Wenyu Zhang, Peisen Yao, and Ji Wang

• We implement our abstract domains in the Crab library and eBPF verifier PREVAIL. Experi-

ments have shown their promising ability to do analysis of real-world programs, hardware

verification, and eBPF verification.

2 PRELIMINARY
Abstract interpretation [7] is a general theory of the approximation of formal program semantics.

It replaces the complex computation in the concrete domain D by an approximate computation in

the abstract domain D♯
. The soundness and precision are reasoned by the Galois connection.

Definition 2.1 (Galois connection). Given two posets (D, ⊆) and (D♯, ⊑), the pair (𝛼 : D→
D♯, 𝛾 :D♯→D) is a Galois connection if: ∀𝑐 ∈D, 𝑎 ∈D♯, 𝛼 (𝑐) ⊑ 𝑎 ⇐⇒ 𝑐 ⊆𝛾 (𝑎), which is denoted

as (D, ⊆)
𝛾

⇆
𝛼

(D♯, ⊑), where 𝛼 and 𝛾 correspondingly are called the abstraction and concretization

functions [42].

CombiningMultiple Abstract Domains [6].Consider two domains:D♯

1
andD♯

2
, with abstraction

functions 𝛼1 and 𝛼2 and concretization functions 𝛾1 and 𝛾2, respectively. The Cartesian product

domain D♯

1×2 ≜ D♯

1
× D♯

2
combines the expressive power of its component domains, but each

component domain conducts analysis independently, resulting in little improvement in analysis

precision. To address this issue, the concept of reduced product is proposed. For an abstract value

(𝑎1, 𝑎2) in D♯

1×2, the reduce operator 𝜌 : D♯

1×2 → D♯

1×2 improves the precision of an abstract value

in one domain by incorporating information from another. It aims to find the optimal abstract

value for each component domain by reducing it to the smallest possible value that aligns with the

concretization of the paired abstract value, i.e., 𝜌 (𝑎1, 𝑎2) ≜ (𝛼1 (𝛾1×2 (𝑎1, 𝑎2), 𝛼2 (𝛾1×2 (𝑎1, 𝑎2)).
Bit-Level Abstraction in Linux eBPF Verifier. The tnum abstraction [60] in the eBPF verifier

tracks each bit of variables drawn from the set of 𝑛-bit machine integers B𝑛 , i.e., the set of all

bit-vector of width 𝑛. Each bit can be known (0 or 1) or unknown (𝜇). We use a pair of two 𝑛-width

bit-vector (𝑣,𝑚) denoted as (𝑣𝑎𝑙𝑢𝑒,𝑚𝑎𝑠𝑘) in the eBPF verifier to represent an abstract element in

the tnum domain D♯
𝑡 . In this way, for 𝑃 = (𝑣,𝑚) ∈ D♯

𝑡 , we can get:

∀𝑖 ∈ [0, 𝑛 − 1] . 𝑃 [𝑖] =

0 if 𝑃 .𝑣 [𝑖] = 0 ∧ 𝑃 .𝑚[𝑖] = 0

1 if 𝑃 .𝑣 [𝑖] = 1 ∧ 𝑃 .𝑚[𝑖] = 0

𝜇 if 𝑃 .𝑣 [𝑖] = 0 ∧ 𝑃 .𝑚[𝑖] = 1

By this end, the known bits are recorded by 𝑣 , while the unknown bits are by𝑚. For example,

for 𝑥 ∈ {8, 9, 10, 11}, the tnum abstraction is 0𝑏10𝜇𝜇, with 𝑣 = 0𝑏1000 and𝑚 = 0𝑏0011. This repre-

sentation also captures some word-level information. The minimum value of the tnum abstraction

is 𝑣 , setting all unknown bits to 0. Also, the maximum abstraction is 𝑣 +𝑚, setting all unknown bits

to 1. Note that tnum is indeed fixed to 64-bit representation in the kernel. Also, this representation

differs slightly from the KnownBits abstraction used in LLVM, which encodes known bits utilizing

a pair of 𝑛-bit values (𝑧𝑒𝑟𝑜, 𝑜𝑛𝑒) to track bits that are certainly 0 and 1, respectively [59].

The abstract value is the bottom, denoted by ⊥𝑡 , when there exists any undefined bit violating

the above representation rule, i.e., 𝑣 &𝑚 ≠ 0; and is top, denoted by ⊤𝑡 , when all bits are unknown,

i.e., 𝑣 = 0 and𝑚 = 𝑢𝑚𝑎𝑥 . For any two abstract elements that are not bottom, the inclusion testing

can be defined as: 𝑃 ⊑𝑡 𝑄 ≜ (𝑃 .𝑣 & ∼𝑄.𝑚) = 𝑄.𝑣 .

The Galois connection between the concrete domain of powerset of 𝑛-width bit-vectors B𝑛 and

the tnum abstract domain can be defined as: (℘(B𝑛), ⊆)
𝛾𝑡

⇆
𝛼𝑡

(D♯
𝑡 , ⊑𝑡), where D♯

𝑡 is the set of all

tnums over B𝑛 : {(𝑣,𝑚) | 𝑣 ∈ B𝑛,𝑚 ∈ B𝑛}. The abstraction function 𝛼𝑡 : ℘(B𝑛) → B𝑛 × B𝑛 is

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA030. Publication date: July 2025.

Program Analysis Combining Generalized Bit-Level and Word-Level Abstractions ISSTA030:5

defined as:

𝛼& (𝐵) ≜ &{𝑏 | 𝑏 ∈ 𝐵} 𝛼 | (𝐵) ≜ |{𝑏 | 𝑏 ∈ 𝐵}
𝛼𝑡 (𝐵) ≜

(
𝛼& (𝐵), 𝛼& (𝐵) ⊕ 𝛼 | (𝐵)

)
where 𝐵 ⊆ B𝑛 is a subset of 𝑛-width bit-vectors.

The concretization function 𝛾𝑡 : B𝑛 × B𝑛 → ℘(B𝑛) is:
𝛾𝑡 (⊥𝑡) ≜ ∅ 𝛾𝑡 (⊤𝑡) ≜ B𝑛

𝛾𝑡 (𝑃) ≜ {𝑐 ∈ B𝑛 | 𝑐 & ∼𝑃 .𝑚 = 𝑃 .𝑣}

In the kernel, tnum implements abstractions for all bit-vector operations and arithmetic operations

except div, mod, and neg. Meanwhile, all abstractions of shift operation only consider shift constant

numbers, e.g., lsh 2 bits. We denote these existing operations over D♯
𝑡 as: +𝑡 , −𝑡 , ×𝑡 , |𝑡 , &𝑡 , ⊕𝑡 , ≪𝑡 ,

≫𝑙𝑡 and ≫𝑎𝑡 . We refer to [60] for more details.

Abstraction Combination in Linux eBPF Verifier. Despite the tnum abstraction, there are

another four word-level abstractions in the eBPF verifier, i.e., (un)signed 64/32-bit interval abstrac-

tions. Rather than using the standard reduced products, almost all of these five abstractions are

combined via the so-called Reduction/abstract operators, which computes an abstraction based on

the analysis results from other abstractions [61]. The kernel uses the reg_bounds_sync function
as a shared "tail" of computation in all of its Reduction/abstract operators. This function has four

steps: (1) improves the signed and unsigned interval abstractions based on the tnum abstraction; (2)

updates unsigned and signed interval abstractions by exchanging information between them; (3)

improves the tnum based on the unsigned interval abstractions; (4) repeats step (1).

We just describe much more about step (3) here. for an unsigned 64-bit interval abstraction

[𝑚𝑖𝑛,𝑚𝑎𝑥], its corresponding tnum abstraction can be derived by the 𝑡𝑛𝑢𝑚_𝑟𝑎𝑛𝑔𝑒 function. It first

determines the highest bit 𝑙 where𝑚𝑖𝑛 differs from𝑚𝑎𝑥 . Then, all bits starting from 𝑙 and lower

than 𝑙 will be set to unknown in the tnum abstraction, while the other higher bits are known as

𝑚𝑖𝑛 and𝑚𝑎𝑥 . For example, the tnum abstraction of the interval ranging from 0𝑏1001 to 0𝑏1111 is

(0𝑏1000, 0𝑏0111), i.e., 0𝑏1𝑢𝑢𝑢.

3 MOTIVATION
We illustrate our motivation with a program taken from [47] whose input is replaced with 𝑦 = −8
and 𝑥 = 5, i.e., 0𝑏00000101, as shown in Fig. 3. Due to the machine integer characteristics, the

value of 𝑥 will wrap to be negative after multiple times of adding 8, i.e., 0𝑏00001000, and should

undoubtedly be -123 in line 7.

Limitations of Existing Abstract Domains. Based on mathematical integer semantics, the

traditional interval domain has infinite precision. After several iterations of the loop, it determines

that 𝑥 is always greater than or equal to 5 and can be positive infinity. Consequently, the loop

condition will never be violated, meaning that line 7 cannot be reached. This outcome is incorrect.

In contrast, the wrapped interval domain (wint) [21, 47] is based on the machine integer se-

mantics and can identify that 𝑥 may wrap to be negative after the loop execution. However, only

characterizing word-level information is not enough to verify this program. As shown in Table 1,

when using the wint domain, we can only derive that 𝑥 is in the range L−128,−121M leading to

false positives in the assertion judgment. This is because wint only determines that 𝑥 may be any

integer in interval L5, 127M before line 5, which after adding 8 would be L13,−121M. Then, joining this
interval with the previous one, wint can derive 𝑥 ∈ L5,−121M at line 4, which can reach convergence
after several times iterations of analysis. Finally, once the loop condition is unsatisfied, 𝑥 is in the

range of L−128,−121M.

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA030. Publication date: July 2025.

ISSTA030:6 Guangsheng Fan, Liqian Chen, Banghu Yin, Wenyu Zhang, Peisen Yao, and Ji Wang

1 char x, y;

2 y = -8;

3 x = 5;//x=(x|5)&(-3)

;

4 while(x >= y){

5 x = x - y;

6 }

7 assert(x == -123);

Fig. 3. Motivating program

Table 1. Program invariants of 𝑥 derived by wint and swb domain at each
location (right) for Fig. 3

L wint swb

4 L5,−121M
〈
L5, 125M, L−123,−123M

〉
∧ ⟨(5, 120), (−123, 0)⟩

5 L5, 127M
〈
L5, 125M,⊥𝑖

〉
∧ ⟨(5, 120),⊥𝑡 ⟩

6 L13,−121M
〈
L13, 125M, L−123,−123M

〉
∧ ⟨(5, 120), (−123, 0)⟩

7 L−128,−121M
〈
⊥𝑖 , L−123,−123M

〉
∧ ⟨⊥𝑡 , (−123, 0)⟩

Our Abstract Domain swb. The wint domain focuses solely on word-level abstraction. In contrast,

this paper introduces a new abstract domain, swb, which integrates both word-level and bit-level

abstractions. This combined approach enables the successful verification of the program. Table 1

compares the program invariants derived from swbwith those from wint. In this table, the invariants
preceding the ∧ symbol correspond to word-level abstraction, while those following it represent

bit-level abstraction.

Benefit of Bit-level Abstraction in swb. The bit-level abstraction in swb domain generalizes

the tnum abstraction in the eBPF verifier to support analyzing programs with loops. It can retain

known and unknown bits in each hemisphere. This is very useful in improving the precision of

the bit-vector program analysis. As we can observe in the program, no matter how many times

adding 8 is made, the lowest three bits of 𝑥 should remain unchanged and always be "101", because

the lowest three bits of 8 are "000", which cannot affect those corresponding bits of 𝑥 during the

addition operation, e.g., 0𝑏1000 + 0𝑏0101 = 0𝑏1101. On the other hand, adding 8 only affects the

other bits, e.g., 0𝑏1000 + 0𝑏01111101 = 0𝑏10000101. With the help of the bit-level abstraction in swb,
we can determine the possible positive value of 𝑥 before line 5 should be those integers ranging

from -3 (0𝑏11111101) to 125 (0𝑏01111101) and have a trailing three bits "101", because -3 and 125

are the minimal and maximal integer greater than 𝑦, respectively.

Being signedness-aware here is also notable for precision analysis. -3 is the only negative integer

that belongs to the above integers and is only different from 125 in the sign bit. However, when using

the tnum domain, the direct abstraction of the above integers with the same trailing can immediately

make all the highest five bits unknown, i.e., 0𝑏𝑢𝑢𝑢𝑢𝑢101. Its corresponding concretization is the set

of all possible integers with the trailing "101", which is far less precise than the signedness-aware

bit-level abstraction in our swb domain.

Benefit of Combining Bit-level and Word-level Abstractions in swb. To maintain consistency

with the signedness-aware bit-level abstraction, the word-level abstraction in swb is designed to

preserve interval range abstraction for each signedness case. In the program shown in Fig. 3, it can

only derive a similar abstraction to the wint domain for the variable 𝑥 . For example, before line 5,

it can also determine that 𝑥 is in the range of L5, 127M.
Combining the word-level and bit-level abstractions in swb via standard reduced product opera-

tion can improve the whole analysis precision. In line 5, we can improve the word-level abstraction

of 𝑥 to the interval L5, 125M, since we know 𝑥 is less than 125, with the help of the bit-level abstrac-

tion. Meanwhile, we can improve the bit-level abstraction to (5, 120), i.e., positive integers with
the trailing "101", because -3 does not satisfy the word-level abstraction. In other words, using the

swb domain, we can determine that 𝑥 is those integers ranging from 5 to 125 and with a trailing

"101". Thus, after adding 8, 𝑥 may wrap from 125 to -123, i.e., 0𝑏10000101, the only integer value

that does not satisfy the loop condition, leading to the assertion becoming true in line 7.

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA030. Publication date: July 2025.

Program Analysis Combining Generalized Bit-Level and Word-Level Abstractions ISSTA030:7

Comparing swb with Existing Abstract Domains. When we replace the assignment of 𝑥 at line

3 in Fig. 3 with a more complex expression consisting of bit-vector operations, i.e., (𝑥 |5)&(−3), 𝑥
can take on any integer with its lowest three bits set to "101". The assertion should still be true.

Unfortunately, the wint domain implemented in the Crab library still reports a false positive

here. After line 3, it considers 𝑥 to be top, i.e., any integers. Thus the abstraction of 𝑥 before line 5

would be L−8, 127M, and after adding 8 would be L0,−121M. However, joining this abstraction with

the former top state would remain top before line 4. Therefore, when the loop condition is not

satisfied, wint domain can only determine that the range of 𝑥 is L−128,−9M, which is much more

imprecise than the analysis result of the program before modification.

Moreover, the machine integer analysis method implemented in Astrée [4, 41] also cannot prove

the assertion. Although it can model the bit-vector operation in line 3, it just transforms the bit-level

abstraction result into word-level abstraction after line 3, thus ignoring all bit-level information

useful for subsequent analysis. It also just focuses on word-level operations for the loop like wint.
Fortunately, thanks to the reduced product between word-level and bit-level abstractions, the

abstraction of 𝑥 by our swb domain in line 5 would still be L5, 125M and has the trailing "101", thus

validating the assertion.

4 BIT-LEVEL ABSTRACTION
This section presents the bit-level abstraction of swb, which retains known and unknown bits in

each signedness case. It generalizes the tnum abstraction used in the eBPF verifier and extends

to be signedness-aware. For the sake of space, we only present some key points of the bit-level

abstraction. Their full details are available in the supplementary material.

4.1 Generalizing tnum Abstraction
We generalize tnum to support all the necessary operations in Table 2 and transfer functions as a

standard abstract domain. We denote this generalized tnum domain as tnum+.

Lattice Operations. To form the complete lattice of B𝑛 , the meet (⊓𝑡) and join (⊔𝑡) operations

are critical components. However, since the kernel tracks along each execution path for loop-free

programs, these operations are not implemented in the eBPF verifier. On the other hand, they are

critical for extending the applicability of the tnum domain. To design algorithms for the meet and

join operations, we should first consider their bit-wise operations:

0 ⊓ 0 ≜ 0, 0 ⊓ 1 ≜⊥, 1 ⊓ 1 ≜ 1, 1 ⊓ 𝜇 ≜ 1, 0 ⊓ 𝜇 ≜ 0, 𝜇 ⊓ 𝜇 ≜ 𝜇

0 ⊔ 0 ≜ 0, 0 ⊔ 1 ≜ 𝜇, 1 ⊔ 1 ≜ 1, 1 ⊔ 𝜇 ≜ 𝜇, 0 ⊔ 𝜇 ≜ 𝜇, 𝜇 ⊔ 𝜇 ≜ 𝜇

Note that whenever the meet operation on a bit returns ⊥, the whole result will be ⊥𝑡 . Based on

the bit-wise operations, the meet and join operations of tnum+ are designed as:

𝑃 ⊓𝑡 𝑄 ≜ (𝑃 .𝑣 |𝑄.𝑣, 𝑃 .𝑚&𝑄.𝑚) 𝑃 ⊔𝑡 𝑄 ≜ (𝑃 .𝑣 &𝑄.𝑣, 𝑃 .𝑚 |𝑄.𝑚 | 𝛿)
where 𝛿 = (𝑃 .𝑣 &𝜂) ⊕ (𝑄.𝑣 &𝜂), and 𝜂 =∼ (𝑃 .𝑚 |𝑄.𝑚). 𝜂 represents those bits that both 𝑃 and 𝑄

are known, thus 𝛿 determines the bits that both 𝑃 and 𝑄 are known, but with different values. For

𝑃 ⊓𝑡 𝑄 , unknown bits of the result must be unknown in 𝑃 and 𝑄 , while all bits with value 1 of 𝑃 or

𝑄 must also be 1 after meeting. In addition, when 𝛿 is non-zero, 𝑃 ⊓𝑡 𝑄 is bottom, since there are

some known bits in conflict values. On the other hand, for 𝑃 ⊔𝑡 𝑄 , the unknown bits of the result

are those that are unknown in 𝑃 or 𝑄 and those that have different values in 𝑃 and 𝑄 , while any

bits with a known value of 1 in both 𝑃 and 𝑄 must also be 1 in the result after joining.

Example 4.1. When computing the meet result of 0𝑏1𝜇𝜇1 = (0𝑏1001, 0𝑏0110) and 0𝑏1𝜇0𝜇 =

(0𝑏1000, 0𝑏0101), we can determine that the unknown bits of the result are 0𝑏0110& 0𝑏0101 =

0𝑏0100, and the values of the other known bits are 0𝑏1001 | 0𝑏1000 = 0𝑏1001, so the meeting

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA030. Publication date: July 2025.

ISSTA030:8 Guangsheng Fan, Liqian Chen, Banghu Yin, Wenyu Zhang, Peisen Yao, and Ji Wang

1 def tnum_udiv(tnum P, tnum Q):

2 if Q.v = 0 return ⊤𝑡

3 B𝑛 MaxP := P.v + P.m

4 B𝑛 MaxR := MaxP /u Q.v

5 tnum R := ⊤𝑡

6 u64 Leadz := countLeadingZero(MaxR)

7 clearHighBits(R.v, Leadz)

8 clearHighBits(R.m, Leadz)

9 return R

Fig. 4. Unsigned division of tnum+

Table 2. Supplementary domain operations of tnum+

compared to tnum

Type New-added operations
Lattice meet, join

Arithmetic

(un)signed division,

(un)signed remainder

Bit-vector

truncation, signed

extension, zero extension,

shift non-constant bits

Extrapolation widening

result is 0𝑏1𝜇01 = (0𝑏1001, 0𝑏0100). As for the join result of 0𝑏1𝜇01 = (0𝑏1001, 0𝑏0100) and
0𝑏0𝜇0𝜇 = (0𝑏0000, 0𝑏0101), we can determine that the unknown bits of the result are 0𝑏0100 |
0𝑏0101 | 0𝑏1000 = 0𝑏1101, and the values of the other known bits are 0𝑏1001& 0𝑏0000 = 0𝑏0000,

so the joining result is 0𝑏𝜇𝜇0𝜇 = (0𝑏0000, 0𝑏1101). Additionally, we can determine that the known

but conflicting bits of 0𝑏1𝜇01 and 0𝑏0𝜇0𝜇 are 0𝑏1000, i.e, the highest bit is in conflict, thus the meet

result of the two abstractions is bottom.

Widening Operation. The lattice height ofD♯
𝑡 for 𝑛-bits integers B𝑛 is a finite constant number 𝑛,

which means the fixpoint iterations of the abstract interpretation-based analysis will eventually get

convergence after finite iterations of worst-case 𝑛. Therefore, the join operation could replace the

widening operation ▽𝑡 of D♯
𝑡 . To accelerate the fixpoint iteration, we also carefully design ▽𝑡 for a

common situation. When 𝑃 and 𝑄 have the same trailing known bits but 𝑄 has more unknown

subsequent higher bits than 𝑃 , 𝑃 ▽𝑡 𝑄 retains the same trailing known bits but make all other bits

unknown.

Example 4.2. Using tnum+ domain to analyze the program in Fig. 3, at line 4, we could conduct

0𝑏0000𝑢101▽𝑡 0𝑏000𝑢𝑢101 . The above design helps us immediately achieve the widening result of

0𝑏𝑢𝑢𝑢𝑢101, which requires multiple joining attempts to reach.

Arithmetic and Bit-Vector Operations. To generalize the tnum domain, we add abstractions

for some essential arithmetic operations, such as unsigned division, signed division, unsigned

remainder, signed remainder, and negation. Implementations of these operations are inspired by

the KnownBits abstraction [59] in LLVM. Additionally, we have designed abstractions for useful

bit-vector operations like truncation, signed extension, and zero extension, which are often used in

typecasting. Furthermore, we have included shift operations that can be performed on constant

numbers and variables. We briefly describe the unsigned division and truncation here, leaving

details of other operations in the supplementary material.

Note that designing a precise enough algorithm for 𝑃/𝑢𝑡𝑄 in D♯
𝑡 is challenging. Instead, we

determine how many high bits of the quotient 𝑅 must be 0, which can be easier and more efficient.

As shown in Fig. 4, the determination is based on the maximal abstraction of 𝑅, which can be

derived by (𝑃 .𝑣 + 𝑃 .𝑚) /𝑢 𝑄.𝑣 , since 𝑃 .𝑣 + 𝑃 .𝑚 denotes the upper bound of 𝑃 , while𝑄.𝑣 is the lower

bound of 𝑄 . All bits in 𝑅 that are higher than the most significant bit in𝑚𝑎𝑥 (𝑅) must be set to 0,

which means the corresponding bits in 𝑅.𝑣 and 𝑅.𝑚 must be set to 0 as well. Note that we cannot

determine the lower trailing 0 (or 1) bits of 𝑅 by computing its minimal value because those values

greater than the minimal value may have different values in these bits.

Example 4.3. Suppose 𝑃 = 0𝑏01𝜇0 and 𝑄 = 0𝑏001𝜇, we first derive that the maximal possible

quotient is𝑚𝑎𝑥 (𝑅) = 0𝑏0110 /𝑢 0𝑏0010 = 0𝑏0011, thus all concrete values of the quotient can be

abstracted as 𝑅 = 0𝑏00𝜇𝜇 = (0𝑏0000, 0𝑏0011). On the other hand, the minimal possible quotient is

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA030. Publication date: July 2025.

Program Analysis Combining Generalized Bit-Level and Word-Level Abstractions ISSTA030:9

𝑚𝑖𝑛(𝑅) = 0𝑏0100 /𝑢 0𝑏0011 = 0𝑏0001. However, there may be some concrete values of the quotient,

e.g., 0𝑏0010, which can be zero in the lowest bit, though greater than𝑚𝑖𝑛(𝑅). Therefore, we cannot
determine a certain value of the lowest bit. Fortunately, once we get the highest bit in value 1 of

𝑚𝑎𝑥 (𝑅), we can soundly determine that the highest two bits of the quotient cannot be 1. Otherwise,

there will be some possible values greater than the maximal one, which is a clear paradox.

When we truncate a bit-vector from 𝑛 bits to 𝑘 < 𝑛 bits, we preserve only the lower 𝑘 bits

of the original bit-vector. Therefore, to truncate an abstract element 𝑃 , we can truncate 𝑃 .𝑣 and

𝑃 .𝑚 respectively using the formula 𝑡𝑟𝑢𝑛𝑐𝑡 (𝑃, 𝑘) = (𝑡𝑟𝑢𝑛𝑐 (𝑃 .𝑣, 𝑘), 𝑡𝑟𝑢𝑛𝑘 (𝑃 .𝑚, 𝑘)). This algorithm is

simpler and more precise than the one designed in the word-level wint domain [21, 47] because

wint only considers two common cases, while leaving other cases to return top abstraction. This

difference can also serve as an example to illustrate how bit-level abstractions outperformword-level

abstractions when dealing with bit-vector operations.

Example 4.4. Suppose 𝑃 = 0𝑏𝜇𝜇𝜇1 = (0𝑏0001, 0𝑏1110), then 𝑡𝑟𝑢𝑛𝑐𝑡 (𝑃, 2) ≜ 0𝑏𝜇1, which can

be derived by 𝑡𝑟𝑢𝑛𝑐 (0𝑏0001, 2) = 0𝑏01 and 𝑡𝑟𝑢𝑛𝑐 (0𝑏1110, 2) = 0𝑏10. For this situation, wint only
returns top.

Supplemental Transfer Functions. The assignment transfer function can be easily defined

with all the above arithmetic and bit-vector abstract operations. We mainly introduce how to deal

with the analysis of conditional statements here. Note that comparison statements in LLVM must

be signed or unsigned explicitly; thus, we should consider these two cases when computing the

abstraction result of the comparison. Take 𝑃 ≤𝑢 𝑄 as an example, where 𝑃,𝑄 ∈ D♯
𝑡 . We compute

their corresponding results 𝑃 ′
and 𝑄 ′

as:

𝑃 ′ ≜

⊥𝑡 if 𝑄 =⊥𝑡 ∨ 𝑃 .𝑣 > 𝑄.𝑣 +𝑄.𝑚

𝑃 if 𝑄.𝑣 +𝑄.𝑚 = 𝑢𝑚𝑎𝑥

𝑃 ⊓𝑡 𝑡𝑛𝑢𝑚_𝑟𝑎𝑛𝑔𝑒 (𝑃 .𝑣, 𝑄.𝑣 +𝑄.𝑚) otherwise

𝑄 ′ ≜

⊥𝑡 if 𝑃 =⊥𝑡 ∨ 𝑃 .𝑣 > 𝑄.𝑣 +𝑄.𝑚

𝑄 if 𝑃 .𝑣 = 𝑢𝑚𝑖𝑛

𝑄 ⊓𝑡 𝑡𝑛𝑢𝑚_𝑟𝑎𝑛𝑔𝑒 (𝑃 .𝑣, 𝑄.𝑣 +𝑄.𝑚) otherwise

where the auxiliary function 𝑡𝑛𝑢𝑚_𝑟𝑎𝑛𝑔𝑒 (𝑙, 𝑢) implemented in the Linux kernel, compute the tnum+

abstraction from an interval with a lower bound 𝑙 and upper bound 𝑢. The implementation of the

signed comparison can be designed similarly. Note that the way we deal with condition statements

is different from those in the kernel for tnum abstraction, where they only update tnum using the
interval information by reg_bound_sync [61].

Example 4.5. Given 𝑃 = 0𝑏𝜇10𝜇 = (0𝑏0100, 0𝑏1001) and 𝑄 = 0𝑏01𝜇𝜇 = (0𝑏0100, 0𝑏0011), the
condition 𝑃 ≤𝑢 𝑄 can be true since the minimal value of 𝑃 (i.e, 0𝑏0100), is less than the maximal

value of 𝑄 (i.e., 0𝑏0111). In this case, 𝑃 will be updated to the overlapping range (i.e., 0𝑏010𝜇) of its

previous abstraction and the abstraction of the range from 0𝑏0100 to 0𝑏0111 (i.e., 0𝑏0𝜇𝜇𝜇).

4.2 Signedness-aware Extension
From the machine integer representation in Fig. 1, it is obvious that the tnum+ abstraction for those

bit-vectors across the South Pole or North Pole, i.e., with different signedness, will lose precision

greatly. For example, 0 ⊔𝑡 −1 = ⊤𝑡 . To address the problem, we improve tnum+ with signedness,

leading to a the bit-level abstraction of swb, denoted as D♯
𝑠 . The main idea is to maintain two

tnum+ elements for each variable, to track the tnum+ abstraction of the variable in 0-hemisphere

and 1-hemisphere respectively.

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA030. Publication date: July 2025.

ISSTA030:10 Guangsheng Fan, Liqian Chen, Banghu Yin, Wenyu Zhang, Peisen Yao, and Ji Wang

Domain Representation. We use ⟨𝑇0,𝑇1⟩ to represent the bit-level abstract value of a variable 𝑥 ,

which means that 𝑥 ∈ 𝑇0 or 𝑥 ∈ 𝑇1, where 𝑇0 denotes ⊥𝑡 or 0-hemisphere tnums and 𝑇1 denote ⊥𝑡

or 1-hemisphere tnums. In particular, we use ⊥𝑠 to represent the empty bit-level abstract value,

sometimes also denoted as ⟨⊥𝑡 ,⊥𝑡 ⟩. Also, we use ⊤𝑠 to represent ⟨(𝑢𝑚𝑖𝑛, 𝑠𝑚𝑎𝑥), (𝑠𝑚𝑖𝑛,𝑢𝑚𝑎𝑥)⟩
which contains all possible values.

The Galois connection between the concrete domain of powerset of 𝑛-width bit-vectors B𝑛

and the bit-level abstraction of swb can be defined as:(℘(B𝑛), ⊆)
𝛾𝑠

⇆
𝛼𝑠

(D♯
𝑠 , ⊑𝑠) where D♯

𝑠 is the set

of all signed tnums over B𝑛 : {⟨(𝑣0,𝑚0), (𝑣1,𝑚1)⟩ | 𝑣0,𝑚0, 𝑣1, 𝑎𝑛𝑑 𝑚1 ∈ B𝑛, 𝑢𝑚𝑖𝑛 ≤ 𝑣0,𝑚0,𝑚1 ≤
𝑠𝑚𝑎𝑥, 𝑠𝑚𝑖𝑛 ≤ 𝑣1 ≤ 𝑢𝑚𝑎𝑥}. D♯

𝑠 forms a complete lattice (D♯
𝑠 , ⊑𝑠 ,⊓𝑠 ,⊔𝑠 ,⊥𝑠 ,⊤𝑠).

The abstraction function 𝛼𝑠 : ℘(B𝑛) → D♯
𝑠 is defined as:

𝛼𝑠 (𝐵) ≜

⊥𝑠 if 𝐵 = ∅
⟨𝛼𝑡 (𝐵), ⊥𝑡 ⟩ if ∀𝑏 ∈ 𝐵,𝑢𝑚𝑖𝑛 ≤ 𝑏 ≤ 𝑠𝑚𝑎𝑥

⟨⊥𝑡 , 𝛼𝑡 (𝐵)⟩ if ∀𝑏 ∈ 𝐵, 𝑠𝑚𝑖𝑛 ≤ 𝑏 ≤ 𝑢𝑚𝑎𝑥

⟨𝛼𝑡 (𝐵0), 𝛼𝑡 (𝐵1)⟩ otherwise

where 𝐵 ⊆ B𝑛 is a subset of 𝑛-width bit-vectors, and 𝐵0 ≜ {𝑏 ∈ 𝐵 | 𝑢𝑚𝑖𝑛 ≤ 𝑏 ≤ 𝑠𝑚𝑎𝑥} while
𝐵1 ≜ {𝑏 ∈ 𝐵 | 𝑠𝑚𝑖𝑛 ≤ 𝑏 ≤ 𝑢𝑚𝑎𝑥}.

The concretization function 𝛾𝑠 : D♯
𝑠 → ℘(B𝑛) is defined as:

𝛾𝑠 (𝑃) ≜

∅ if 𝑃 =⊥𝑠

𝛾𝑡 ((𝑣,𝑚)) if 𝑃 = ⟨⊥𝑡 , (𝑣,𝑚)⟩ ∨ 𝑃 = ⟨(𝑣,𝑚), ⊥𝑡 ⟩
𝛾𝑡 ((𝑣0,𝑚0)) ∪ 𝛾𝑡 ((𝑣1,𝑚1)) if 𝑃 = ⟨(𝑣0,𝑚0), (𝑣1,𝑚1)⟩

where 𝑃 ∈ D♯
𝑠 represents an abstract element in the bit-level abstract domain of swb.

Besides, for a tnum+ element 𝑇 , we can construct its corresponding bit-level abstraction in swb
by:

𝑠𝑝𝑙𝑖𝑡 (𝑇) ≜

⊤𝑠 , if 𝑇 = ⊤𝑡

⊥𝑠 , if 𝑇 = ⊥𝑡

⟨𝑇,⊥𝑡 ⟩ if 𝑇 .𝑣 ≤ 𝑠𝑚𝑎𝑥 ∧𝑇 .𝑚 ≤ 𝑠𝑚𝑎𝑥

⟨⊥𝑡 ,𝑇 ⟩ if 𝑠𝑚𝑖𝑛 ≤ 𝑇 .𝑣 ∧𝑇 .𝑚 ≤ 𝑠𝑚𝑎𝑥

⟨(𝑇 .𝑣, 𝑇 .𝑚& 𝑠𝑚𝑎𝑥), (𝑇 .𝑣 | 𝑠𝑚𝑖𝑛, 𝑇 .𝑚& 𝑠𝑚𝑎𝑥)⟩ otherwise

Example 4.6. Given concrete values {0𝑏1000, 0𝑏1010, 0𝑏0000, 0𝑏0001}, their tnum+ abstraction

is 0𝑏𝜇0𝜇𝜇, which also includes 4 redundant concrete values. However, in D♯
𝑠 , we can abstract the

given values in different hemispheres and derive ⟨0𝑏000𝜇, 0𝑏10𝜇0⟩, which still keep completeness.

Domain Operators. Assuming ⟨𝑇0, 𝑇1⟩ and
〈
𝑇 ′
0
, 𝑇 ′

1

〉
are abstract elements in D♯

𝑠 , we design the

domain operations for domain D♯
𝑠 based on their corresponding operations in domain D♯

𝑡 , as

shown in Fig. 5. The abstraction of each lattice operation, including meet, join, and inclusion testing,

is defined by applying the corresponding abstractions of D♯
𝑡 on each identical hemisphere. For

each arithmetic and bit-vector binary operation 𝑏𝑜𝑝 , the intuitive abstraction 𝑏𝑜𝑝𝑠 can be defined

by applying 𝑏𝑜𝑝𝑡 on every two hemispheres.

Moreover, we can make use of the concrete semantics and the signedness information of 𝑇𝑖 and

𝑇 ′
𝑗 to reduce the amount of calling 𝑠𝑝𝑙𝑖𝑡 and ⊔𝑠 . For example, the unsigned division will always

lead to a quotient in the 0-hemisphere, unless for 𝑇1 /𝑢𝑡 𝑇 ′
0
. Therefore, we define the operation as:

⟨𝑇0, 𝑇1⟩ /𝑢𝑠
〈
𝑇 ′
0
, 𝑇 ′

1

〉
≜

〈
𝑇 ′′
0
, ⊥𝑡

〉
⊔𝑠 𝑠𝑝𝑙𝑖𝑡 (𝑇1/𝑢𝑡𝑇 ′

0
), where𝑇 ′′

0
≜ 𝑇0/𝑢𝑡𝑇 ′

0
⊔𝑡 𝑇0/𝑢𝑡𝑇 ′

1
⊔𝑡 𝑇1/𝑢𝑡𝑇 ′

1
. The

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA030. Publication date: July 2025.

Program Analysis Combining Generalized Bit-Level and Word-Level Abstractions ISSTA030:11

Type Abstraction

Lattice

⟨𝑇0, 𝑇1⟩ ⊑𝑠

〈
𝑇 ′
0
, 𝑇 ′

1

〉
≜ 𝑇0 ⊑𝑡 𝑇

′
0
∧𝑇1 ⊑𝑡 𝑇

′
1

⟨𝑇0, 𝑇1⟩ ⊓𝑠

〈
𝑇 ′
0
, 𝑇 ′

1

〉
≜

〈
𝑇0 ⊓𝑡 𝑇

′
0
, 𝑇1 ⊓𝑡 𝑇

′
1

〉
⟨𝑇0, 𝑇1⟩ ⊔𝑠

〈
𝑇 ′
0
, 𝑇 ′

1

〉
≜

〈
𝑇0 ⊔𝑡 𝑇

′
0
, 𝑇1 ⊔𝑡 𝑇

′
1

〉
Arithmetic and

Bit-vector

⟨𝑇0, 𝑇1⟩ 𝑏𝑜𝑝𝑠
〈
𝑇 ′
0
, 𝑇 ′

1

〉
≜ ⊔𝑠 {𝑅 | 𝑅 = 𝑠𝑝𝑙𝑖𝑡 (𝑇𝑖 𝑏𝑜𝑝𝑡 𝑇 ′

𝑗), 𝑖, 𝑗 ∈ {0, 1}}

Widening ⟨𝑇0, 𝑇1⟩ ▽𝑠

〈
𝑇 ′
0
, 𝑇 ′

1

〉
≜

〈
𝑇0 ⊔𝑡 𝑇

′
0
, 𝑇1 ⊔𝑡 𝑇

′
1

〉
Fig. 5. Domain operations of the bit-level abstraction in swb

abstractions of other arithmetic and bit-vector operations are designed similarly and shown in the

supplementary material.

Example 4.7. Given 𝑃 = ⟨0𝑏00𝜇0, 0𝑏1𝜇𝜇𝜇⟩ , 𝑄 = ⟨0𝑏00𝜇1,⊥𝑡 ⟩, we can observe that: when 𝑄 is

0b0001, then 0𝑏1𝜇𝜇𝜇/𝑢𝑡 0𝑏0001 ≜ 0𝑏1𝜇𝜇𝜇; when 𝑄 is 0𝑏0011, then the quotient must be in the

0-hemisphere. Therefore, 0𝑏1𝜇𝜇𝜇/𝑢𝑡 0𝑏00𝜇1 may not be bottom in each hemisphere and needs to

be split. In fact, for the unsigned division operation, the quotient can be in the 1-hemisphere only

if the divisor is potentially 1 and the dividend is not bottom in the 1-hemisphere.

The widening operation of D♯
𝑠 is usually replaced by its join operation. As mentioned in Sec. 4.1,

we also design an efficient algorithm when the two abstract states have common trailing bits in the

same hemisphere. In this case, we immediately set all other higher bits to be unknown but keep

the sign bit unchanged.

Example 4.8. When analyzing the program in Fig. 3, with the above special consideration about

widening operation, we have ⟨0𝑏0000𝑢101,⊥𝑡 ⟩ ▽𝑠 ⟨0𝑏000𝑢𝑢101,⊥𝑡 ⟩ ≜ ⟨0𝑏0𝑢𝑢𝑢𝑢101,⊥𝑡 ⟩ at line 4.
Transfer Functions. The test transfer functions of domain D♯

𝑠 are designed similarly to those in

tnum+ domain. For 𝑃,𝑄 ∈ D♯
𝑠 , we compute the result 𝑃 ′

of 𝑃 ≤𝑢 𝑄 as follows:

𝑃 ′ ≜

⊥𝑠 if 𝑄 =⊥𝑠 ∨ 𝑢𝑚𝑖𝑛𝑃 > 𝑢𝑚𝑎𝑥𝑄

𝑃 if 𝑄.𝑣 +𝑄.𝑚 = 𝑢𝑚𝑎𝑥

𝑃 ⊓𝑠 𝑠𝑝𝑙𝑖𝑡𝑅𝑎𝑛𝑔𝑒 (𝑃,𝑄) otherwise

where 𝑠𝑝𝑙𝑖𝑡𝑅𝑎𝑛𝑔𝑒 (𝑃,𝑄) ≜ 𝑠𝑝𝑙𝑖𝑡 (𝑡𝑛𝑢𝑚_𝑟𝑎𝑛𝑔𝑒 (𝑃 .𝑣, 𝑄.𝑣 +𝑄.𝑚)), 𝑢𝑚𝑖𝑛𝑃 is the unsigned minimal

abstract value of 𝑃 , and 𝑢𝑚𝑎𝑥𝑄 is the unsigned maximal abstract value of 𝑄 .

5 WORD-LEVEL ABSTRACTION
This section presents the word-level abstraction of swb, which tracks each hemisphere’s lower

and upper bounds. Compared to the wrapped interval domain [21, 47] (wint), it has two unique
advantages: (1) It can express disjunctive properties depending on different signs; (2) It can be

better integrated with the bit-level abstract domain since both track each hemisphere’s values. Full

details of the implementation are available in the supplementary material.

5.1 Domain Representation
Let ⊥𝑖 represent an empty interval based on machine integer semantics. We use 𝐼0 to denote either

⊥𝑖 or a normal machine integer interval L𝑙𝑏0, 𝑢𝑏0M where 𝑢𝑚𝑖𝑛 ≤ 𝑙𝑏0 ≤ 𝑢𝑏0 ≤ 𝑠𝑚𝑎𝑥 . Similarly, 𝐼1
represents ⊥𝑖 or a normal machine integer interval L𝑙𝑏1, 𝑢𝑏1M where 𝑠𝑚𝑖𝑛 ≤ 𝑙𝑏1 ≤ 𝑢𝑏1 ≤ 𝑢𝑚𝑎𝑥 .

To represent the word-level abstraction of swb for a variable 𝑥 , we use ⟨𝐼0, 𝐼1⟩, which means

that 𝑥 belongs to either 𝐼0 or 𝐼1. The representation for an empty signed wrapped interval is ⊥𝑤

or ⟨⊥𝑖 ,⊥𝑖⟩. On the other hand, ⊤𝑤 represents the interval

〈
L𝑢𝑚𝑖𝑛, 𝑠𝑚𝑎𝑥M, L𝑠𝑚𝑖𝑛,𝑢𝑚𝑎𝑥M

〉
, which

encompasses all possible values. We refer to L𝑢𝑚𝑖𝑛, 𝑠𝑚𝑎𝑥M as ⊤0, and L𝑠𝑚𝑖𝑛,𝑢𝑚𝑎𝑥M as ⊤1.

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA030. Publication date: July 2025.

ISSTA030:12 Guangsheng Fan, Liqian Chen, Banghu Yin, Wenyu Zhang, Peisen Yao, and Ji Wang

lb1ub0

N

S

start

end

N

S u_ubu_lb

s_lbs_ub
N

S ub1lb0

N

S

endstart

(a) wint

N

S

u_ub

(b) eBPF

u_lb

s_lbs_ub

N

S

ub1lb0

lb1ub0

(c) Ours

Fig. 6. Comparison between different interval-like abstractions.

The Galois connection between the concrete domain of powerset of of 𝑛-width bit-vectors B𝑛 and

the word-level abstraction of swb can be defined as: (℘(B𝑛), ⊆)
𝛾𝑤

⇆
𝛼𝑤

(D♯
𝑤, ⊑𝑤), whereD♯

𝑤 is the set of

all signed wrapped interval over B𝑛 : {
〈
L𝑙𝑏0, 𝑢𝑏0M, L𝑙𝑏1, 𝑢𝑏1M

〉
| 𝑙𝑏0, 𝑢𝑏0, 𝑙𝑏1, 𝑢𝑏1 ∈ B𝑛, 𝑢𝑚𝑖𝑛 ≤ 𝑙𝑏0 ≤

𝑢𝑏0 ≤ 𝑠𝑚𝑎𝑥, 𝑠𝑚𝑖𝑛 ≤ 𝑙𝑏1 ≤ 𝑢𝑏1 ≤ 𝑢𝑚𝑎𝑥}. D♯
𝑤 forms a complete lattice (D♯

𝑤, ⊑𝑤,⊓𝑤,⊔𝑤,⊥𝑤,⊤𝑤).
The abstraction function 𝛼𝑤 : ℘(B𝑛) → D♯

𝑤 is:

𝛼𝑤 (𝐵) ≜

⊥𝑤 if 𝐵 = ∅〈
L𝑖𝑛𝑓 𝐵, 𝑠𝑢𝑝 𝐵M, ⊥𝑡

〉
if ∀𝑏 ∈ 𝐵,𝑢𝑚𝑖𝑛 ≤ 𝑏 ≤ 𝑠𝑚𝑎𝑥〈

⊥𝑡 , L𝑖𝑛𝑓 𝐵, 𝑠𝑢𝑝 𝐵M
〉

if ∀𝑏 ∈ 𝐵, 𝑠𝑚𝑖𝑛 ≤ 𝑏 ≤ 𝑢𝑚𝑎𝑥〈
L𝑖𝑛𝑓 𝐵, 𝑠𝑢𝑝 𝐵0M, L𝑖𝑛𝑓 𝐵1, 𝑠𝑢𝑝 𝐵M

〉
otherwise

where 𝐵 ⊆ B𝑛 is a subset of 𝑛-width bit-vectors, and 𝐵0 ≜ {𝑏 ∈ 𝐵 | 𝑢𝑚𝑖𝑛 ≤ 𝑏 ≤ 𝑠𝑚𝑎𝑥} while
𝐵1 ≜ {𝑏 ∈ 𝐵 | 𝑠𝑚𝑖𝑛 ≤ 𝑏 ≤ 𝑢𝑚𝑎𝑥}.

The concretization function 𝛾𝑤 : D♯
𝑤 → ℘(B𝑛) is defined as:

𝛾𝑤 (𝑃) ≜

∅ if 𝑃 =⊥𝑤

{𝑥 ∈B𝑛 | 𝑙 ≤𝑥 ≤𝑢} if 𝑃 =
〈
⊥𝑖 , L𝑙, 𝑢M

〉
𝑜𝑟 𝑃 =

〈
L𝑙, 𝑢M, ⊥𝑖

〉
{𝑥 ∈B𝑛 | 𝑙𝑏0 ≤𝑥 ≤𝑢𝑏0 ∨ 𝑙𝑏1 ≤𝑥 ≤𝑢𝑏1} if 𝑃 =

〈
L𝑙𝑏0, 𝑢𝑏0M, L𝑙𝑏1, 𝑢𝑏1M

〉
where 𝑃 ∈ D♯

𝑤 represents an abstract element in the word-level abstraction of swb.
It is important to note that this abstract representation differs from the representation of the

wint domain [21, 47], which uses L𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑M to represent all values from 𝑠𝑡𝑎𝑟𝑡 to 𝑒𝑛𝑑 clockwise.

Meanwhile, wint allows 𝑒𝑛𝑑 < 𝑠𝑡𝑎𝑟𝑡 , by which it can represent all possible values in L𝑢𝑚𝑖𝑛, 𝑒𝑛𝑑M ∨
L𝑠𝑡𝑎𝑟𝑡,𝑢𝑚𝑎𝑥M. This can be more precise than our word-level domain, only when 𝑒𝑛𝑑 < 𝑠𝑡𝑎𝑟𝑡

and they have the same sign. However, wint is less precise when representing two intervals in

different signs. On the other hand, our word-level abstraction is always equal to the combination

of signed and unsigned interval abstractions implemented in the kernel, which can be represented

as L𝑠_𝑙𝑏, 𝑠_𝑢𝑏M and L𝑢_𝑙𝑏,𝑢_𝑢𝑏M respectively.
The comparison is illustrated in Fig. 6, where the top (bottom) three circles represent a better

(worse) analysis precision for wint domain. The arcs of those parts filled in the two leftmost circles

of Fig. 6(a) represent the concrete values that we need to abstract in each case. Solid red and blue

arcs represent wint and our word-level abstraction correspondingly; grass-green and yellow arcs

represent the unsigned interval and signed interval abstraction of eBPF, respectively.

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA030. Publication date: July 2025.

Program Analysis Combining Generalized Bit-Level and Word-Level Abstractions ISSTA030:13

Type Abstraction

Lattice

⟨𝐼0, 𝐼1⟩ ⊑𝑤

〈
𝐼 ′
0
, 𝐼 ′

1

〉
≜ 𝐼0 ⊑𝑖 𝐼

′
0
∧ 𝐼1 ⊑𝑖 𝐼

′
1

⟨𝐼0, 𝐼1⟩ ⊓𝑤

〈
𝐼 ′
0
, 𝐼 ′

1

〉
≜

〈
𝐼0 ⊓𝑖 𝐼

′
0
, 𝐼1 ⊓𝑖 𝐼

′
1

〉
⟨𝐼0, 𝐼1⟩ ⊔𝑤

〈
𝐼 ′
0
, 𝐼 ′

1

〉
≜

〈
𝐼0 ⊔𝑖 𝐼

′
0
, 𝐼1 ⊔𝑖 𝐼

′
1

〉
Arithmetic and

Bit-vector

⟨𝐼0, 𝐼1⟩ 𝑏𝑜𝑝𝑤
〈
𝐼 ′
0
, 𝐼 ′

1

〉
≜ ⊔𝑤{𝑅 | 𝑅 = 𝑏𝑟𝑒𝑎𝑘 (𝐼𝑎 𝑏𝑜𝑝𝑖 𝐼 ′𝑏), 𝑎, 𝑏 ∈ {0, 1}}

Widening ⟨𝐼0, 𝐼1⟩ ▽𝑤

〈
𝐼 ′
0
, 𝐼 ′

1

〉
≜

〈
𝐼0▽𝑖 𝐼

′
0
, 𝐼1▽𝑖 𝐼

′
1

〉
Fig. 7. Domain operations of the word-level abstraction in swb

We can derive a signed wrapped interval from a non-bottom wrapped interval𝑊 = L𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑M
by the following auxiliary function:

𝑏𝑟𝑒𝑎𝑘 (𝑊) ≜

〈
L𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑M, ⊥𝑖

〉
if 𝑠𝑡𝑎𝑟𝑡 ≤ 𝑒𝑛𝑑 ≤ 𝑠𝑚𝑎𝑥〈

⊥𝑖 , L𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑M
〉

if 𝑠𝑚𝑖𝑛 ≤ 𝑠𝑡𝑎𝑟𝑡 ≤ 𝑒𝑛𝑑〈
L𝑠𝑡𝑎𝑟𝑡, 𝑠𝑚𝑎𝑥M, L𝑠𝑚𝑖𝑛, 𝑒𝑛𝑑M

〉
if 𝑠𝑡𝑎𝑟𝑡 ≤ 𝑠𝑚𝑎𝑥 ∧ 𝑠𝑚𝑖𝑛 ≤ 𝑒𝑛𝑑〈

L𝑢𝑚𝑖𝑛, 𝑒𝑛𝑑M, L𝑠𝑡𝑎𝑟𝑡,𝑢𝑚𝑎𝑥M
〉

if 𝑒𝑛𝑑 ≤ 𝑠𝑚𝑎𝑥 ∧ 𝑠𝑚𝑖𝑛 ≤ 𝑠𝑡𝑎𝑟𝑡

⊤𝑤 otherwise

5.2 Domain Operators and Transfer Functions
Assuming ⟨𝐼0, 𝐼1⟩ =

〈
L𝑙𝑏0, 𝑢𝑏0M, L𝑙𝑏1, 𝑢𝑏1M

〉
and

〈
𝐼 ′
0
, 𝐼 ′
1

〉
=

〈
L𝑙𝑏′

0
, 𝑢𝑏′

0
M, L𝑙𝑏′

1
, 𝑢𝑏′

1
M
〉
are abstract elements

in D♯
𝑤 , we design the domain operations for the domain D♯

𝑤 in the way similar to the bit-level

abstraction D♯
𝑠 , as shown in Fig. 7. The sub-abstractions ⊑𝑖 , ⊓𝑖 , and ⊔𝑖 are defined like those in the

classical interval domain [8], while 𝑏𝑜𝑝𝑖 are designed following those in wint.

The difference between the domain operations in our word-level abstraction D♯
𝑤 with those in

wint domain is: we split the machine integer circle into two hemispheres and always do operations

between each of them, while wint chooses not to split the circle or just split the circle into one or

two hemispheres depending on the operation as needed. For bit-vector operations, we only design

abstractions for truncation and extension, while leaving other operations to simply return ⊤𝑤 ,

similar to the implementation in the wint domain of the Crab library.

Meanwhile, our addition, subtraction, and multiplication operations are more precise than those

in the kernel, as the kernel’s interval operations return a top value upon detecting overflow.

Additionally, the Linux kernel lacks division and remainder operations.

For 𝑛-bits integers B𝑛 , the lattice height of D♯
𝑤 is 2

𝑛
. Although it is finite, we still need to design

a widening operation to accelerate the fixed point iteration, as shown in Fig. 7, where 𝐼𝑘▽𝑖 𝐼
′
𝑘
do

widening by doubling the size of the interval like wint [21], but just consider the 0 or 1-hemisphere,

rather than the whole circle.

The test transfer functions is designed similarly to the D♯
𝑠 and D♯

𝑡 domain. Here, we also take

𝑃 ≤𝑢 𝑄 as an example, where 𝑃,𝑄 ∈ D♯
𝑤 . If 𝑄 =⊥𝑤 , then the result 𝑃 ′

corresponding to 𝑃 is

obviously also ⊥𝑤 . Otherwise, for 𝑄 =

〈
𝐼 ′
0
, 𝐼 ′
1

〉
, with 𝐼 ′

1
= L𝑙𝑏′

1
, 𝑢𝑏′

1
M and 𝐼 ′

0
= L𝑙𝑏′

0
, 𝑢𝑏′

0
M, we compute

the result 𝑃 ′
as:

𝑃 ′ ≜

{
𝑃 ⊓𝑤 𝑏𝑟𝑒𝑎𝑘 (L𝑢𝑚𝑖𝑛,𝑢𝑏′

0
M) if 𝐼 ′

1
=⊥𝑖

𝑃 ⊓𝑤 𝑏𝑟𝑒𝑎𝑘 (L𝑢𝑚𝑖𝑛,𝑢𝑏′
1
M) otherwise

Note that we determine the intersection part from extreme value 𝑢𝑚𝑖𝑛, since this can still retain

enough analysis precision at the word level. The computation for 𝑄 ′
and the implementation of

the signed comparison can be designed similarly.

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA030. Publication date: July 2025.

ISSTA030:14 Guangsheng Fan, Liqian Chen, Banghu Yin, Wenyu Zhang, Peisen Yao, and Ji Wang

6 COMBINING BIT-LEVEL ANDWORD-LEVEL ABSTRACTIONS
Our analysis leverages a combination of word-level and bit-level abstractions by applying the

reduced product operation, resulting in a newly defined domain, denoted as swb. Formally, this

domain is expressed as D♯

𝑠𝑤𝑏
≜ D♯

𝑠 × D♯
𝑤 . Compared to the tnum+ and wint domains, this product

domain offers significantly higher precision, as it preserves disjunctive information regarding signs

and integrates both bit-level and word-level abstractions effectively.

6.1 Reduced Product Operator Design
Inspired from the reduce operation, i.e., the reg_bounds_sync function [61] used in the kernel, the

reduced product function 𝜌 we design in this paper acts upon each hemisphere 𝑘 (𝑘 ∈ {0, 1}) of
machine integers independently, in the following three steps:

First, we update the word-level abstraction 𝐼𝑘 to 𝐼 ′
𝑘
using the information of the bit-level abstrac-

tion 𝑇𝑘 , since this bit-level abstraction also reveals the minimal and maximal potential values:

𝐼 ′
𝑘
.𝑙𝑏 = 𝑇𝑘 .𝑣 > 𝐼𝑘 .𝑙𝑏 ? 𝑇𝑘 .𝑣 : 𝐼𝑘 .𝑙𝑏

𝐼 ′
𝑘
.𝑢𝑏 = 𝑇𝑘 .𝑣 +𝑇𝑘 .𝑚 < 𝐼𝑘 .𝑢𝑏 ? 𝑇𝑘 .𝑣 +𝑇𝑘 .𝑚 : 𝐼𝑘 .𝑢𝑏

Then, we improve the bit-level abstraction 𝑇𝑘 to 𝑇 ′
𝑘
with the bit information getting from the

updated word-level abstraction 𝐼 ′
𝑘
, by:

𝑇 ′
𝑘
= 𝑇𝑘 ⊓𝑡 𝑡𝑛𝑢𝑚_𝑟𝑎𝑛𝑔𝑒 (𝐼 ′

𝑘
.𝑙𝑏, 𝐼 ′

𝑘
.𝑢𝑏)

Finally, we update the bound of the word-level abstraction again from 𝑇 ′
𝑘
, in the way like the

first step, by:

𝐼 ′′
𝑘
.𝑙𝑏 = 𝑇 ′

𝑘
.𝑣 > 𝐼 ′

𝑘
.𝑙𝑏 ? 𝑇 ′

𝑘
.𝑣 : 𝐼 ′

𝑘
.𝑙𝑏

𝐼 ′′
𝑘
.𝑢𝑏 = 𝑇 ′

𝑘
.𝑣 +𝑇 ′

𝑘
.𝑚 < 𝐼 ′

𝑘
.𝑢𝑏 ? 𝑇 ′

𝑘
.𝑣 +𝑇 ′

𝑘
.𝑚 : 𝐼 ′

𝑘
.𝑢𝑏

This is because the updated 𝑇 ′
𝑘
may also have a chance to improve the value bounds. We will prove

that these three steps are sufficient to realize the standard reduced product operator in the next

subsection.

Example 6.1. Suppose after the first step, 𝐼 ′
𝑘
= L0𝑏0000, 0𝑏0011M and𝑇𝑘 = (0𝑏0000, 0𝑏0110). Then,

after the second step, we will refine the bit-level abstraction to 𝑇 ′
𝑘
= (0𝑏0000, 0𝑏0010), which can

also improve the word-level abstraction to 𝐼 ′′
𝑘
= L0𝑏0000, 0𝑏0010M.

Compared to the abstraction reduction implemented in the kernel, our reduced product function

does not need to transfer information between signed and unsigned intervals, thanks to the design

of our word-level abstraction. Meanwhile, with the help of the standard reduced product operation,

there are no need of Abstraction/Reduction Operators [61] in the bit-level and word-level abstraction.

All abstract domains are designed independently, and they have independent algorithms and

implementations for abstracting each operation, without relying on the abstract results of other

abstract domains as inputs for computation.

It is also interesting to note that, like [61], we use the conventional terminology "reduced product"

to denote the combination operator between the bit-level and word-level abstraction. However,

The tnum+ domain is non-convex, resembling set-based methods in some aspects but distinguished

by its unique value encoding and mask mechanism. Therefore, the combination operator is also

similar to the "Witness operator" [25], but still has some differences.

6.2 Soundness and Optimality
Recall the preliminary knowledge of reduced product operation in Sec. 2. Soundness of the operator

means all concrete values should be contained in the abstraction of each component domain. After

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA030. Publication date: July 2025.

Program Analysis Combining Generalized Bit-Level and Word-Level Abstractions ISSTA030:15

that, the optimality of the operator means that the precision of each component abstraction can

not be improved anymore, though with the help of another component abstraction.

Our reduced operation 𝜌 adheres to soundness and optimality. Specifically, 𝜌 ensures the con-

struction of a sound swb abstraction while maintaining the optimality of its component abstractions.

Soundness is straightforward to establish, as the three steps of 𝜌 and all abstract operations of both

bit-level and word-level abstractions are sound by construction. On the other hand, recent work

by Vishwanathan et al. [61] has verified the soundness of similar Abstraction/Reduction Operators,
which closely resemble our reduced function 𝜌 . However, their work does not address optimality.

In contrast, we provide a formal proof of the optimality of 𝜌 , i.e, the bit-level and word-level

abstractions cannot be improved anymore by their cooperation after doing 𝜌 . Our proof assumes

that 𝜌 updates all lower and upper bounds in the first and third steps, representing the most complex

cases. The proof for other cases follows a similar reasoning process.

Theorem 6.2. 𝑡𝑛𝑢𝑚_𝑟𝑎𝑛𝑔𝑒 (𝐼 ′′
𝑘
.𝑙𝑏, 𝐼 ′′

𝑘
.𝑢𝑏) == 𝑡𝑛𝑢𝑚_𝑟𝑎𝑛𝑔𝑒 (𝐼 ′

𝑘
.𝑙𝑏, 𝐼 ′

𝑘
.𝑢𝑏).

Proof. From the above assumption, 𝜌 updates all lower and upper bounds in the first and third

steps, thus 𝐼 ′′
𝑘
.𝑙𝑏 = 𝑇 ′

𝑘
.𝑣 , 𝐼 ′′

𝑘
.𝑢𝑏 = 𝑇 ′

𝑘
.𝑣 + 𝑇 ′

𝑘
.𝑚, 𝐼 ′

𝑘
.𝑙𝑏 = 𝑇𝑘 .𝑣 , and 𝐼 ′

𝑘
.𝑢𝑏 = 𝑇𝑘 .𝑣 + 𝑇𝑘 .𝑚. Meanwhile,

suppose 𝑡𝑚𝑝 = 𝑡𝑛𝑢𝑚_𝑟𝑎𝑛𝑔𝑒 (𝐼 ′
𝑘
.𝑙𝑏, 𝐼 ′

𝑘
.𝑢𝑏) = 𝑡𝑛𝑢𝑚_𝑟𝑎𝑛𝑔𝑒 (𝑇𝑘 .𝑣, 𝑇𝑘 .𝑣 +𝑇𝑘 .𝑚), then from the design

of meet operation, we have 𝑇 ′
𝑘
.𝑣 = 𝑇𝑘 .𝑣 | 𝑡𝑚𝑝.𝑣 and 𝑇 ′

𝑘
.𝑚 = 𝑇𝑘 .𝑚 & 𝑡𝑚𝑝.𝑚 for the second step of 𝜌 .

So, 𝑡𝑛𝑢𝑚_𝑟𝑎𝑛𝑔𝑒 (𝐼 ′′
𝑘
.𝑙𝑏, 𝐼 ′′

𝑘
.𝑢𝑏) = 𝑡𝑛𝑢𝑚_𝑟𝑎𝑛𝑔𝑒 (𝑇𝑘 .𝑣 | 𝑡𝑚𝑝.𝑣, 𝑇𝑘 .𝑣 | 𝑡𝑚𝑝.𝑣 +𝑇𝑘 .𝑚 & 𝑡𝑚𝑝.𝑚). Recall the

computation process of 𝑡𝑛𝑢𝑚_𝑟𝑎𝑛𝑔𝑒 in Sec. 2, 𝑡𝑚𝑝.𝑚 sets all bits from the highest bit (denoted as 𝑙)

of 𝑇𝑘 .𝑚 that is 1 to the lowest bit to be 1, while 𝑡𝑚𝑝.𝑣 just retains those bits of 𝑇𝑘 .𝑣 upper than 𝑙 .

From this, we can know that 𝑇𝑘 .𝑚 & 𝑡𝑚𝑝.𝑚 is equal to 𝑇𝑘 .𝑚, and 𝑇𝑘 .𝑣 | 𝑡𝑚𝑝.𝑣 is equal to 𝑇𝑘 .𝑣 also.

Therefore, 𝑡𝑛𝑢𝑚_𝑟𝑎𝑛𝑔𝑒 (𝐼 ′′
𝑘
.𝑙𝑏, 𝐼 ′′

𝑘
.𝑢𝑏) is equal to 𝑡𝑛𝑢𝑚_𝑟𝑎𝑛𝑔𝑒 (𝑇𝑘 .𝑣, 𝑇𝑘 .𝑣 + 𝑇𝑘 .𝑚), and the proof is

established.

Theorem 6.3. Reduced operation 𝜌 finds optimal bit-level and word-level abstractions.

Proof. The reduced operation 𝜌 uses three steps to cooperate information between bit-level and

word-level abstractions. Note that the third step is similar to the first step to improve the word-level

abstraction with the help of bit-level abstraction. Also, we can only improve the bit-level abstraction

similarly to the second step. Therefore, 𝜌 finds the optimal abstractions after the above three steps,

implying that there should not be another step that improves the bit-level abstraction with the help

of word-level abstraction in a way like the second step. i.e.,𝑇 ′
𝑘
== 𝑇 ′

𝑘
⊓𝑡 𝑡𝑛𝑢𝑚_𝑟𝑎𝑛𝑔𝑒 (𝐼 ′′

𝑘
.𝑙𝑏, 𝐼 ′′

𝑘
.𝑢𝑏).

From Theorem 6.2, we only need to prove 𝑇 ′
𝑘
== 𝑇 ′

𝑘
⊓𝑡 𝑡𝑛𝑢𝑚_𝑟𝑎𝑛𝑔𝑒 (𝐼 ′

𝑘
.𝑙𝑏, 𝐼 ′

𝑘
.𝑢𝑏). Because in the

second step of 𝜌 , 𝑇 ′
𝑘
= 𝑇𝑘 ⊓𝑡 𝑡𝑛𝑢𝑚_𝑟𝑎𝑛𝑔𝑒 (𝐼 ′

𝑘
.𝑙𝑏, 𝐼 ′

𝑘
.𝑢𝑏), the proof is established.

Complexity. The word-level and bit-level domains proposed in this paper operate independently

on each program variable. Consequently, the time complexity of both domains, as well as their

combination (swb), is𝑂 (𝑛), where 𝑛 represents the number of program variables. This ensures that

the analysis scales efficiently to real-world programs.

7 EVALUATION
We implement the tnum+ domain and the combined domain swb in the Crab library

1
, and do some

experiments to evaluate them. We aimed to answer three research questions:

• RQ1: How do the above domains perform when analyzing real-world programs with complex

loop structures without bit-vector operations?

• RQ2: Can the combined domain aid in analyzing programs with intensive bit-vector opera-

tions from hardware verification?

1
https://github.com/seahorn/crab

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA030. Publication date: July 2025.

ISSTA030:16 Guangsheng Fan, Liqian Chen, Banghu Yin, Wenyu Zhang, Peisen Yao, and Ji Wang

Table 3. Results for loop programs

Source Files LoC

wint tnum+ swb
CR Time CR Time CR Time

loops 32 652 20 0.55 20 0.63 20 1.36

loop-acceleration 26 412 17 0.54 16 0.59 18 1.13

loop-crafted 3 54 1 0.05 1 0.1 1 0.22

loop-invgen 25 5881 38 2.28 19 10.58 45 32.98

loop-lit 29 2081 19 0.7 4 0.74 21 2.39

loop-new 11 312 1 0.23 0 0.58 2 0.77

loop-industry-pattern 5 421 1 0.2 1 0.36 1 1.39

loops-crafted-1 51 1399 11 35.71 11 204.52 16 107.87

loop-invariants 7 127 2 0.13 2 0.16 4 0.25

loop-simple 8 127 7 19.19 1 17.36 7 42.36

loop-zilu 52 839 32 0.86 30 0.86 32 1.69

• RQ3: How does the combined domain behave in eBPF program analysis?

To answer RQ1 and RQ2, we evaluated a set of C programs using the Clam analyzer
2
, an LLVM

(version 14.0) frontend for Crab. We only use Clam’s default parameters, such as the interprocedural

analysis methods, widening thresholds, etc. The benchmarks for RQ1 are taken from the category

"ReachSafety-Loops" of SV-COMP 2024
3
, which is often used to evaluate the performance of different

static analysis tools. Meanwhile, these benchmarks exclude bit-vector operations and thus are

useful to evaluate how program analysis can be improved with the help of bit-level information. We

only reserve those programs that can be analyzed by wint domain implemented in Crab. For RQ2,

we used programs from the "BV" category of Word-level Hardware-Model-Checking Benchmarks
4

that consist of Btor2 circuits and their corresponding C programs translated by Btor2C [1] in

lazy mode. These C programs consist of lots of bit-vector operations because of the translation.

To answer RQ3, we implement swb domain in the eBPF verifier PREVAIL of version [23]
5
that is

implemented based on Crab also. Correspondingly, we use the benchmarks
6
that are included in

the tool and consist of 208 programs that can pass the eBPF verifier in Linux.

All the experiments were performed on a machine running Ubuntu 22.04 (64-bit), with 256GB

RAM and a 3.7 GHz 32-core AMD 3970X CPU. We set the time limit for analyzing each program of

each question to 180 seconds.

7.1 RQ1. Analyzing Loop Programs without Bit-Vector Operations
The analysis results for SV-COMP loop programs are shown in Table 3, where “CR” denotes the

count of assertions that Clam validates correctly. “Files” are the counts of tested programs for

different sources of loop programs, and “LoC” represents the total lines of these programs, excluding

comments and blanks. Note that, each program has at least one assertion. We record the analysis

time of different domains in seconds. We only compare our swb domain and tnum+ domain with

the wint domain, ignoring the other abstract domains because all the domains we design are not

relational, and wint is the only widely used domain based on machine integer semantics.

Our findings indicate that bit-level abstraction tnum+ cannot validate most programs indepen-

dently. This is normal because the benchmark programs only consist of arithmetic operations, and

2
https://github.com/seahorn/clam

3
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/tree/svcomp24-final?ref_type=tags

4
https://gitlab.com/sosy-lab/research/data/word-level-hwmc-benchmarks/-/tree/tacas23-camera?ref_type=tags

5
https://github.com/vbpf/ebpf-verifier/tree/d29fd26345c3126bf166cf1c45233a9b2f9fb0a0

6
https://github.com/vbpf/ebpf-samples/tree/8307b929b2db298622a1e380b8610d5eebcdca32

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA030. Publication date: July 2025.

Program Analysis Combining Generalized Bit-Level and Word-Level Abstractions ISSTA030:17

the domain is mainly designed to retain bit-level information. However, when combining bit-level

abstraction and word-level abstractions, our swb domain can validate 167 programs in total, much

more than the existing wint domain that only validates 149 programs since it only focuses on

word-level abstraction. This comparison reveals that it is also of great significance to retain both

bit-level and word-level abstractions at the same time for arithmetic operations, even though the

benchmark programs do not consist of bit-vector operations. Note that all these abstract domains

are non-relational. Thus, it is not easy for them to validate relational assertions, not to mention

those programs that are even difficult for relational abstract domains.

As for efficiency, analysis with tnum+ domain typically spends time similarly to those with wint
domain because they have the same complexity. However, tnum+ sometimes may be much more

inefficient, e.g., for “loop-invgen” and “loop-crafted-1”, since we just replace the widening operation

of tnum+ with the join operation except for a special consideration of one useful common case. In the

worst case, tnum+ needs the same number of times as the bit-width to converge. Therefore, designing

a more effective widening operation is of great significance in future work. Meanwhile, swb usually
has to spend more time than the sum of tnum+ and wint. This is obvious since swb combines two

abstractions and retains information on different signs rather than tnum+ and wint. However, swb
spends less time than tnum+ for “loop-crafted-1”. This is because the efficient widening operation

of the word-level abstraction in swb can alleviate the inefficiency of the bit-level abstraction and

make swb converge faster.

In summary, when analyzing real-world programs with complex loop structures without bit-

vector operations, our swb domain is much more precise than the existing wint domain, thanks to

the combination of the bit-level and word-level abstraction. Meanwhile, swb also has considerable

efficiency, though it has a more complicated design.

7.2 RQ2. Analyzing Hardware-Related Programs with Intensive Bit-Vector Operations
Table 4 introduces the benchmarks from the hardware verification, where “Source” represents the

project they come from and is denoted with an “ID”. “Files” is the total count of each project, while

“LoC” means the total lines of the C programs translated from Verilog in lazy mode, excluding

comments and blanks.

Table 5 shows the total experiment results of the comparison between Clam equipped with swb,
CPAchecker

7
[2], and AVR

8
[24]. CPAchecker is the state-of-the-art software verifier based on

model checking. AVR is the state-of-the-art hardware model checker that won Hardware Model

Checking Competitions (HWMCC) 2020, and directly takes Btor2 as input, which is the modeling

language used for HWMCC. AVR has implemented bounded model checking (BMC) [3], property

directed reachability (PDR) [20], and k-induction [63]. “Time” is the total execution time in seconds

of these tools. We only use the default parameters of these two tools, except for the same time

limit as Clam. For each source of benchmarks, bold in Table 5 indicates that the number of correct

validations is the highest among all comparison tools, and the red font indicates that the time

required to validate is the least.

As we can see, AVR has correct validation results (CR) for most assertions in total, but spends

lots of time. This is because AVR is operating the Btor2 circuit directly and has specially designed

analysis algorithms, while other tools analyze more complex C programs. When using classical

software verifiers like CPAchecker to validate the programs translated from hardware, we can not

achieve the same performance as those designed for hardware verification, e.g., AVR. Among the

three tools, CPAchecker validates the least assertions, nearly 28% of AVR, but spends the most

7
https://cpachecker.sosy-lab.org/, version 2.3.1-svn

8
https://github.com/aman-goel/avr, version 2.1

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA030. Publication date: July 2025.

ISSTA030:18 Guangsheng Fan, Liqian Chen, Banghu Yin, Wenyu Zhang, Peisen Yao, and Ji Wang

Table 4. Benchmarks from hardware verification
ID Source Files LoC ID Source Files Loc

1 beem 664 5,041,059 7 mann-2020 1 102

2 btor2tools-examples 8 425 8 mann-data-integrity 76 270,064

3 goel-crafted 24 8,764 9 v2c-hwmcc15 390 657,652

4 goel-industry 241 4,325,173 10 wolf-2018D 280 63,368

5 goel-opensource 137 450,424 11 wolf-2019A 390 316,113

6 mann-2019 4 2,241 12 wolf-2019C 113 718,287

Table 5. Results for programs from hardware verification. Bold fonts mean the maximal assertions validated,
while red fonts indicate minimal time spent.

ID

AVR CPAchecker Clam+swb

CR Time(s) CR Time(s) CR Time(s)

1 212 87008.8 55 105897.7 313 1409.7

2 8 0.5 8 127.9 9 0.1

3 22 71.5 19 1737.5 8 1.4

4 216 6328.7 14 24299.8 5 701.9

5 125 2007.3 95 11083.9 44 26.6

6 1 539.8 1 465.2 2 1.2

7 1 0.1 0 180 0 0.1

8 15 12090.3 0 12341 76 47.3

9 6 2174.4 0 2528.3 0 58.4

10 8 977.1 0 2363.8 0 14.2

11 0 3058.1 0 1153.8 17 64.4

12 63 10302.7 2 18360.2 0 169.6

Total 677 124559.3 194 180539.1 474 2494.9

time, even 1.4 times more than AVR. Since CPAchecker is mainly based on model checking, it has

to consume much more time. This is obvious, but the comparison between AVR and CPAchecker

also shows that it is difficult for conventional software verifiers to validate bit-vector intensive C

programs that are translated from hardware.

Fortunately, when equipped with swb domain, Clam validates more assertions for some sorts

of benchmarks than AVR and CPAchecker. The total counts of Clam exceed 2.4 times more than

CPAchecker while reaching 70.0% of AVR. In fact, because CPAchecker and AVR are based on

model checking, they have substantial time consumption in constraint solving, leading to lots

of assertions can not be validated. However, with the combination of bit-level and word-level

abstraction, Clam is able to analyze the intensive bit-vector operations in these benchmarks with

considerable precision. More surprisingly, thanks to the abstract interpretation framework, Clam

spends the least total time among these tools, even only 2.0% of AVR and 1.3% of CPAchecker.

In summary, when analyzing programs with intensive bit-vector operations, our swb domain

has great efficiency while still having considerable efficiency compared to state-of-the-art software

and hardware verifiers, thus it is useful in aiding hardware verification.

7.3 RQ3. Analyzing eBPF Programs
We use our swb domain and wint domain to do eBPF verification and compare their performance

because they are both based on machine integer semantics rather than mathematical semantics.

For precision, our swb domain can verify 157 programs in total, much more than wint domain

which can only verify 48 programs. All programs verified by wint can also be verified by swb. We

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA030. Publication date: July 2025.

Program Analysis Combining Generalized Bit-Level and Word-Level Abstractions ISSTA030:19

Fig. 8. Time (Sec) and memory usages (KB) of eBPF program analysis

notice that wint can only analyze these verified programs while meeting problems when analyzing

the remaining programs. This is surprising, as it is a commonly used abstract domain in Crab.

Meanwhile, the Linux eBPF verifier designs abstractions based on machine integers. From this

perspective, our swb domain may play an important part when designing an eBPF verifier outside

Linux in the future.

Fig. 8 shows the execution time in seconds and memory usage for analyzing eBPF programs with

different numbers of instructions. swb almost spends twice as much time as the wint. Considering
eBPF programs have no loop, this result is acceptable, because swb combines both word-level and

bit-level abstractions, and is also signedness-aware. Fortunately, swb can verify these programs in

very little time. Meanwhile, swb domain only consumes similar memory compared to wint domain.

In summary, when analyzing eBPF programs, our swb domain demonstrates higher precision

compared to the wint domain, with similar memory usage, while also maintaining negligible

analysis time.

8 DISCUSSIONS
Threats to Validity.We only implement the swb domain in the Crab library but pay little attention

to the other components of a static analyzer since the abstract domain is the core of the abstract

interpretation framework and has the potential to be included in other static analyzers. However,

to adapt a static analyzer which is based on mathematical integer semantics to machine integer

semantics, all other components should also be modified a lot, which is not easy. For example,

Clam replaces unsigned comparisons with signed comparisons in a specific form when translating

LLVM IR to its intermediate representation CrabIR. This process is sound in mathematical integer

semantics but is not sound in machine integer semantics. Meanwhile, the assertion-checking

component of Clam may also affect the final results, leading to false positives, though the program

invariants here imply assertions to be true in fact.

Other Implications. One improvement of the eBPF program analysis based on swb domain

is to characterize the disjunctive properties of programs, like what the range analysis in Linux

kernel does. For instance, we can combine swb with trace partitioning [38] or design more precise

disjunctive abstract domain [22, 27] based on swb. In this way, we may explore bugs in the eBPF

verifier for both Windows [19] and Linux through differential testing, similar to existing compiler

testing methods [37, 53]. Additionally, we can utilize the swb domain to assist in solving BV theory

SMT problems [65], particularly those that involve a combination of bit-vector and arithmetic

operations, which present a challenging issue [36, 64].

9 RELATEDWORK
Abstract Domains Based on Machine Integer Semantics. A growing interest has been in

redesigning word-level abstract domains to better model low-level code behaviors using machine

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA030. Publication date: July 2025.

ISSTA030:20 Guangsheng Fan, Liqian Chen, Banghu Yin, Wenyu Zhang, Peisen Yao, and Ji Wang

integer semantics [34, 35, 45, 46, 52, 54, 55]. Our word-level abstraction is closely related to the

wrapped interval [21, 47], which improves the interval domain to track the effects of integer overflow.

This abstraction is efficient, similar to the wrapped interval domain, and has higher accuracy in

tracking values in different signs. Other means to determine the bit-precise interval abstraction,

such as SAT [5, 26], BDD [50], quantifier elimination [33], and constrained optimization [66], may

be more precise but are much more time-consuming.

Apart from the eBPF Verifier, word-level and bit-level abstractions are implemented in LLVM

[59]. Regehr and Duongsaa [49] proposed the unsigned interval domain and bitwise domain, whose

arithmetic operations are much slower than those of tnum. Vishwanathan et al. [60] improved the

multiplication operation of tnum. To supplement existing domains in the Astrée [4], Miné [41]

extended the classical interval domain with modular components and a bitfield domain focused

only on bit-vector operation. Recently, Yoon et al. [67] improved loop-free program synthesis by

combining unsigned interval, signed interval, and bitwise abstractions. Compared to the above

works, our combination uses the standard reduced product operation for more generalized and

precise domains and can analyze programs with loops.

Linux eBPF System Safety. Recently, the numerical range analysis implementation in the eBPF

verifier has been verified to comply with the relevant soundness specifications [61]. In contrast, Sun

and Su [56] utilized a technique called state embedding to identify logic bugs in the complete eBPF

verifier, but this was done without carefully designed specifications. Additionally, Jitterbug [48]

employs formal methods to verify the correctness of the eBPF JIT compiler across different ar-

chitectures. Beyond formal verification, fuzz testing is also conducted to enhance the safety of

eBPF [30, 51, 62]. BVF [57] generates structured eBPF programs that successfully pass the verifier.

It then utilizes memory sanitation and kernel mechanisms to identify correctness bugs within the

verifier. To uncover vulnerabilities in the eBPF runtime, BRF [29] improves program generation to

adhere to the semantics and dependencies required by both the verifier and the eBPF subsystem.

10 CONCLUSION
We present an efficient and practical analysis for machine integers, combining new bit-level

and word-level abstractions via standard reduced product operation. The bit-level abstraction

generalizes the tnum abstraction in the eBPF verifier and extends it to track known bits more

precisely in different signs. The word-level abstraction is a signed wrapped interval that can track

lower and upper bounds in different signs, improving collaboration with the bit-level abstraction.

We demonstrate the promising ability of our technique in various practical scenarios.

11 DATA AVAILABILITY
All source code, experimental results and benchmark programs are publicly available at Zenodo.

Acknowledgments
We thank the ISSTA 2025 reviewers for their constructive feedback. This work is supported by

the National Key R&D Program of China (No.2022YFA1005101) and the National Natural Science

Foundation of China (Nos.62032024, 62302434 and U2341212)

References
[1] Dirk Beyer, Po-Chun Chien, and Nian-Ze Lee. 2023. Bridging hardware and software analysis with Btor2C: A word-

level-circuit-to-C translator. In International Conference on Tools and Algorithms for the Construction and Analysis of
Systems. Springer, 152–172. doi:10.1007/978-3-031-30820-8_12

[2] Dirk Beyer and M. Erkan Keremoglu. 2011. CPAchecker: A Tool for Configurable Software Verification. In Computer
Aided Verification. Springer, Berlin, Heidelberg, 184–190. doi:10.1007/978-3-642-22110-1_16

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA030. Publication date: July 2025.

https://zenodo.org/records/14024794
https://doi.org/10.1007/978-3-031-30820-8_12
https://doi.org/10.1007/978-3-642-22110-1_16

Program Analysis Combining Generalized Bit-Level and Word-Level Abstractions ISSTA030:21

[3] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yunshan Zhu. 1999. Symbolic Model Checking without

BDDs. In Tools and Algorithms for Construction and Analysis of Systems, 5th International Conference, TACAS ’99,
Amsterdam, The Netherlands, March 22-28, 1999. Springer. doi:10.1007/3-540-49059-0_14

[4] Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine Miné, David Monniaux,

and Xavier Rival. 2003. A static analyzer for large safety-critical software. In Proceedings of the ACM SIGPLAN 2003
conference on Programming language design and implementation. 196–207. doi:10.1145/781131.781153

[5] Jörg Brauer and Andy King. 2010. Automatic abstraction for intervals using Boolean formulae. In Proceedings of the
17th International Conference on Static Analysis (Perpignan, France) (SAS’10). Springer, Berlin, Heidelberg, 167–183.

[6] Patrick Cousot. 2021. Principles of abstract interpretation. MIT Press.

[7] Patrick Cousot and Radhia Cousot. 1977. Abstract interpretation: a unified lattice model for static analysis of programs

by construction or approximation of fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN symposium on Principles
of programming languages. 238–252. doi:10.1145/512950.512973

[8] Patrick Cousot and Radhia Cousot. 1977. Static determination of dynamic properties of generalized type unions. In

Proceedings of an ACM Conference on Language Design for Reliable Software (Raleigh, North Carolina). ACM, New York,

NY, USA, 77–94. doi:10.1145/800022.808314

[9] Patrick Cousot and Nicolas Halbwachs. 1978. Automatic discovery of linear restraints among variables of a program.

In Proceedings of the 5th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages (Tucson, Arizona)
(POPL ’78). ACM, New York, NY, USA, 84–96. doi:10.1145/512760.512770

[10] CWE-190. 2024. CWE-190: Integer Overflow or Wraparound. https://cwe.mitre.org/data/definitions/190.html

[11] CWE-191. 2024. CWE-191: Integer Underflow (Wrap or Wraparound). https://cwe.mitre.org/data/definitions/191.html

[12] CWE-192. 2024. CWE-192: Integer Coercion Error. https://cwe.mitre.org/data/definitions/192.html

[13] CWE-194. 2024. CWE-194: Unexpected Sign Extension. https://cwe.mitre.org/data/definitions/194.html

[14] CWE-195. 2024. CWE-195: Signed to Unsigned Conversion Error. https://cwe.mitre.org/data/definitions/195.html

[15] CWE-196. 2024. CWE-196: Unsigned to Signed Conversion Error. https://cwe.mitre.org/data/definitions/196.html

[16] CWE-197. 2024. CWE-197: Numeric Truncation Error. https://cwe.mitre.org/data/definitions/197.html

[17] CWE-680. 2024. CWE-680: Integer Overflow to Buffer Overflow. https://cwe.mitre.org/data/definitions/197.html

[18] CWE-681. 2024. CWE-681: Incorrect Conversion between Numeric Types. https://cwe.mitre.org/data/definitions/681.

html

[19] Poorna Gaddehosur Dave Thaler. 2021. Making eBPF work on Windows. https://opensource.microsoft.com/blog/

2021/05/10/making-ebpf-work-on-windows/

[20] Niklas Eén, Alan Mishchenko, and Robert K. Brayton. 2011. Efficient implementation of property directed reachability.

In International Conference on Formal Methods in Computer-Aided Design, FMCAD ’11, Austin, TX, USA. FMCAD Inc.,

125–134. http://dl.acm.org/citation.cfm?id=2157675

[21] Graeme Gange, Jorge A Navas, Peter Schachte, Harald Søndergaard, and Peter J Stuckey. 2015. Interval analysis and

machine arithmetic: Why signedness ignorance is bliss. ACM Transactions on Programming Languages and Systems
(TOPLAS) 37, 1 (2015), 1–35. doi:10.1145/2651360

[22] Graeme Gange, Jorge A Navas, Peter Schachte, Harald Søndergaard, and Peter J Stuckey. 2021. Disjunctive interval

analysis. In International Static Analysis Symposium. Springer, Berlin, Heidelberg, 144–165. doi:10.1007/978-3-030-

88806-0_7

[23] Elazar Gershuni, Nadav Amit, Arie Gurfinkel, Nina Narodytska, Jorge A. Navas, Noam Rinetzky, Leonid Ryzhyk, and

Mooly Sagiv. 2019. Simple and precise static analysis of untrusted Linux kernel extensions. In Proceedings of the 40th
ACM SIGPLAN Conference on Programming Language Design and Implementation (Phoenix, AZ, USA) (PLDI 2019).
ACM, New York, NY, USA, 1069–1084. doi:10.1145/3314221.3314590

[24] Aman Goel and Karem Sakallah. 2020. AVR: Abstractly Verifying Reachability. In Tools and Algorithms for the
Construction and Analysis of Systems. Springer, 413–422. doi:10.1007/978-3-030-45190-5_23

[25] Sumit Gulwani, Tal Lev-Ami, and Mooly Sagiv. 2009. A combination framework for tracking partition sizes. In

Proceedings of the 36th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2009,
Savannah, GA, USA, January 21-23, 2009. ACM, 239–251. doi:10.1145/1480881.1480912

[26] Sumit Gulwani, Saurabh Srivastava, and Ramarathnam Venkatesan. 2008. Program analysis as constraint solving. In

Proceedings of the 29th ACM SIGPLAN Conference on Programming Language Design and Implementation (Tucson, AZ,

USA) (PLDI ’08). ACM, New York, NY, USA, 281–292. doi:10.1145/1375581.1375616

[27] Arie Gurfinkel and Sagar Chaki. 2010. Boxes: A symbolic abstract domain of boxes. In International Static Analysis
Symposium. Springer, Berlin, Heidelberg, 287–303. doi:10.1007/978-3-642-15769-1_18

[28] Arie Gurfinkel and Jorge A Navas. 2021. Abstract interpretation of LLVM with a region-based memory model. In

International Workshop on Numerical Software Verification. Springer, 122–144. doi:10.1007/978-3-030-95561-8_8
[29] Hsin-Wei Hung and Ardalan Amiri Sani. 2024. BRF: Fuzzing the eBPF Runtime. Proceedings of the ACM on Software

Engineering 1, FSE (2024), 1152–1171. doi:10.1145/3643778

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA030. Publication date: July 2025.

https://doi.org/10.1007/3-540-49059-0_14
https://doi.org/10.1145/781131.781153
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/800022.808314
https://doi.org/10.1145/512760.512770
https://cwe.mitre.org/data/definitions/190.html
https://cwe.mitre.org/data/definitions/191.html
https://cwe.mitre.org/data/definitions/192.html
https://cwe.mitre.org/data/definitions/194.html
https://cwe.mitre.org/data/definitions/195.html
https://cwe.mitre.org/data/definitions/196.html
https://cwe.mitre.org/data/definitions/197.html
https://cwe.mitre.org/data/definitions/197.html
https://cwe.mitre.org/data/definitions/681.html
https://cwe.mitre.org/data/definitions/681.html
https://opensource.microsoft.com/blog/2021/05/10/making-ebpf-work-on-windows/
https://opensource.microsoft.com/blog/2021/05/10/making-ebpf-work-on-windows/
http://dl.acm.org/citation.cfm?id=2157675
https://doi.org/10.1145/2651360
https://doi.org/10.1007/978-3-030-88806-0_7
https://doi.org/10.1007/978-3-030-88806-0_7
https://doi.org/10.1145/3314221.3314590
https://doi.org/10.1007/978-3-030-45190-5_23
https://doi.org/10.1145/1480881.1480912
https://doi.org/10.1145/1375581.1375616
https://doi.org/10.1007/978-3-642-15769-1_18
https://doi.org/10.1007/978-3-030-95561-8_8
https://doi.org/10.1145/3643778

ISSTA030:22 Guangsheng Fan, Liqian Chen, Banghu Yin, Wenyu Zhang, Peisen Yao, and Ji Wang

[30] Juan José López Jaimez and Meador Inge. 2023. Buzzer. https://github.com/google/buzzer

[31] Bertrand Jeannet and Antoine Miné. 2009. Apron: A Library of Numerical Abstract Domains for Static Analysis. In

Computer Aided Verification. Springer, Berlin, Heidelberg, 661–667. doi:10.1007/978-3-642-02658-4_52
[32] Pankaj Kumar Kalita, Sujit Kumar Muduli, Loris D’Antoni, Thomas Reps, and Subhajit Roy. 2022. Synthesizing abstract

transformers. Proceedings of the ACM on Programming Languages 6, OOPSLA2 (2022), 1291–1319. doi:10.1145/3563334
[33] Deepak Kapur. 2006. Automatically generating loop invariants using quantifier elimination. Schloss-Dagstuhl-Leibniz

Zentrum für Informatik.

[34] Andy King and Harald Søndergaard. 2008. Inferring congruence equations using SAT. In Computer Aided Verification:
20th International Conference, CAV 2008 Princeton, NJ, USA, July 7-14, 2008 Proceedings 20. Springer, 281–293. doi:10.
1007/978-3-540-70545-1_2

[35] Andy King and Harald Søndergaard. 2010. Automatic abstraction for congruences. In International Workshop on
Verification, Model Checking, and Abstract Interpretation. Springer, 197–213. doi:10.1007/978-3-642-11319-2_16

[36] Jaehyung Lee and Woosuk Lee. 2023. Simplifying Mixed Boolean-Arithmetic Obfuscation by Program Synthesis

and Term Rewriting. In Proceedings of the 2023 ACM SIGSAC Conference on Computer and Communications Security
(Copenhagen, Denmark) (CCS ’23). ACM, New York, NY, USA, 2351–2365. doi:10.1145/3576915.3623186

[37] Jiawei Liu, Jinkun Lin, Fabian Ruffy, Cheng Tan, Jinyang Li, Aurojit Panda, and Lingming Zhang. 2023. NNSmith:

Generating Diverse and Valid Test Cases for Deep Learning Compilers. In Proceedings of the 28th ACM International
Conference on Architectural Support for Programming Languages and Operating Systems, Volume 2 (Vancouver, BC,

Canada) (ASPLOS 2023). ACM, New York, NY, USA, 530–543. doi:10.1145/3575693.3575707

[38] Laurent Mauborgne and Xavier Rival. 2005. Trace Partitioning in Abstract Interpretation Based Static Analyzers. In

Programming Languages and Systems. Springer, Berlin, Heidelberg, 5–20. doi:10.1007/978-3-540-31987-0_2
[39] Antoine Miné. 2001. A new numerical abstract domain based on difference-bound matrices. In Programs as Data

Objects: Second Symposium, PADO2001 Aarhus, Denmark, May 21–23, 2001 Proceedings. Springer, 155–172. doi:10.1007/3-
540-44978-7_10

[40] Antoine Miné. 2006. The octagon abstract domain. Higher-order and symbolic computation 19 (2006), 31–100. doi:10.

1007/s10990-006-8609-1

[41] Antoine Miné. 2012. Abstract domains for bit-level machine integer and floating-point operations. InWING’12-4th
International Workshop on invariant Generation. 16.

[42] Antoine Miné et al. 2017. Tutorial on static inference of numeric invariants by abstract interpretation. Foundations
and Trends® in Programming Languages 4, 3-4 (2017), 120–372.

[43] Rajdeep Mukherjee, Daniel Kroening, and Tom Melham. 2015. Hardware verification using software analyzers. In 2015
IEEE Computer Society Annual Symposium on VLSI. IEEE, 7–12. doi:10.1109/ISVLSI.2015.107

[44] Rajdeep Mukherjee, Michael Tautschnig, and Daniel Kroening. 2016. v2c–A verilog to C translator. In Tools and
Algorithms for the Construction and Analysis of Systems: 22nd International Conference, TACAS 2016, Eindhoven, The
Netherlands, April 2-8, 2016. Springer, 580–586. doi:10.1007/978-3-662-49674-9_38

[45] Markus Müller-Olm and Helmut Seidl. 2005. Analysis of modular arithmetic. In Programming Languages and Systems:
14th European Symposium on Programming, ESOP 2005, Edinburgh, UK, April 4-8, 2005. Springer, 46–60. doi:10.1007/978-
3-540-31987-0_5

[46] Markus Müller-Olm and Helmut Seidl. 2007. Analysis of modular arithmetic. ACM Trans. Program. Lang. Syst. 29, 5
(Aug. 2007), 29–es. doi:10.1145/1275497.1275504

[47] Jorge A Navas, Peter Schachte, Harald Søndergaard, and Peter J Stuckey. 2012. Signedness-agnostic program analysis:

Precise integer bounds for low-level code. In Programming Languages and Systems: 10th Asian Symposium, APLAS
2012, Kyoto, Japan, December 11-13, 2012. Proceedings 10. Springer, 115–130. doi:10.1007/978-3-642-35182-2_9

[48] Luke Nelson, Jacob Van Geffen, Emina Torlak, and Xi Wang. 2020. Specification and verification in the field: Applying

formal methods to {BPF} just-in-time compilers in the linux kernel. In 14th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 20). 41–61.

[49] John Regehr and Usit Duongsaa. 2006. Deriving abstract transfer functions for analyzing embedded software. ACM
SIGPLAN Notices 41, 7 (2006), 34–43. doi:10.1145/1159974.1134657

[50] John Regehr and Alastair Reid. 2004. HOIST: a system for automatically deriving static analyzers for embedded

systems. In Proceedings of the 11th International Conference on Architectural Support for Programming Languages and
Operating Systems (Boston, MA, USA) (ASPLOS XI). ACM, New York, NY, USA, 133–143. doi:10.1145/1024393.1024410

[51] Simon Scannell. 2020. eBPF Fuzzer. https://scannell.io/posts/ebpf-fuzzing

[52] Thomas Seed, Chris Coppins, Andy King, and Neil Evans. 2023. Polynomial analysis of modular arithmetic. In

International Static Analysis Symposium. Springer, 508–539. doi:10.1007/978-3-031-44245-2_22

[53] Mayank Sharma, Pingshi Yu, and Alastair F. Donaldson. 2023. RustSmith: Random Differential Compiler Testing for

Rust. In Proceedings of the 32nd ACM SIGSOFT International Symposium on Software Testing and Analysis (Seattle, WA,

USA) (ISSTA 2023). ACM, New York, NY, USA, 1483–1486. doi:10.1145/3597926.3604919

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA030. Publication date: July 2025.

https://github.com/google/buzzer
https://doi.org/10.1007/978-3-642-02658-4_52
https://doi.org/10.1145/3563334
https://doi.org/10.1007/978-3-540-70545-1_2
https://doi.org/10.1007/978-3-540-70545-1_2
https://doi.org/10.1007/978-3-642-11319-2_16
https://doi.org/10.1145/3576915.3623186
https://doi.org/10.1145/3575693.3575707
https://doi.org/10.1007/978-3-540-31987-0_2
https://doi.org/10.1007/3-540-44978-7_10
https://doi.org/10.1007/3-540-44978-7_10
https://doi.org/10.1007/s10990-006-8609-1
https://doi.org/10.1007/s10990-006-8609-1
https://doi.org/10.1109/ISVLSI.2015.107
https://doi.org/10.1007/978-3-662-49674-9_38
https://doi.org/10.1007/978-3-540-31987-0_5
https://doi.org/10.1007/978-3-540-31987-0_5
https://doi.org/10.1145/1275497.1275504
https://doi.org/10.1007/978-3-642-35182-2_9
https://doi.org/10.1145/1159974.1134657
https://doi.org/10.1145/1024393.1024410
https://scannell.io/posts/ebpf-fuzzing
https://doi.org/10.1007/978-3-031-44245-2_22
https://doi.org/10.1145/3597926.3604919

Program Analysis Combining Generalized Bit-Level and Word-Level Abstractions ISSTA030:23

[54] Tushar Sharma and Thomas Reps. 2017. Sound bit-precise numerical domains. In International Conference on Verification,
Model Checking, and Abstract Interpretation. Springer, 500–520. doi:10.1007/978-3-319-52234-0_27

[55] Axel Simon and Andy King. 2007. Taming the wrapping of integer arithmetic. In International Static Analysis Symposium.

Springer, 121–136. doi:10.1007/978-3-540-74061-2_8

[56] Hao Sun and Zhendong Su. 2024. Validating the {eBPF} verifier via state embedding. In 18th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 24). 615–628.

[57] Hao Sun, Yiru Xu, Jianzhong Liu, Yuheng Shen, Nan Guan, and Yu Jiang. 2024. Finding Correctness Bugs in eBPF

Verifier with Structured and Sanitized Program. In Proceedings of the Nineteenth European Conference on Computer
Systems (Athens, Greece) (EuroSys ’24). ACM, New York, NY, USA, 689–703. doi:10.1145/3627703.3629562

[58] Joseph Tafese, Isabel Garcia-Contreras, and Arie Gurfinkel. 2023. BTOR2MLIR: A Format and Toolchain for Hardware

Verification.. In FMCAD. 55–63.
[59] Jubi Taneja, Zhengyang Liu, and John Regehr. 2020. Testing static analyses for precision and soundness. In Proceedings of

the 18th ACM/IEEE International Symposium on Code Generation and Optimization. 81–93. doi:10.1145/3368826.3377927
[60] Harishankar Vishwanathan, Matan Shachnai, Srinivas Narayana, and Santosh Nagarakatte. 2022. Sound, precise, and

fast abstract interpretation with tristate numbers. In 2022 IEEE/ACM International Symposium on Code Generation and
Optimization (CGO). IEEE, 254–265. doi:10.1109/CGO53902.2022.9741267

[61] Harishankar Vishwanathan, Matan Shachnai, Srinivas Narayana, and Santosh Nagarakatte. 2023. Verifying the Verifier:

eBPF Range Analysis Verification. In International Conference on Computer Aided Verification. Springer, 226–251.
doi:10.1007/978-3-031-37709-9_12

[62] Dmitry Vyukov and Andrey Konovalov. 2015. Syzkaller: an unsupervised coverage-guided kernel fuzzer,. https:

//github.com/google/syzkaller

[63] Thomas Wahl. 2013. The k-induction principle. Northeastern University, College of Computer and Information Science
(2013), 1–2.

[64] Dongpeng Xu, Binbin Liu, Weijie Feng, Jiang Ming, Qilong Zheng, Jing Li, and Qiaoyan Yu. 2021. Boosting SMT

solver performance on mixed-bitwise-arithmetic expressions. In Proceedings of the 42nd ACM SIGPLAN International
Conference on Programming Language Design and Implementation (Virtual, Canada) (PLDI 2021). ACM, New York, NY,

USA, 651–664. doi:10.1145/3453483.3454068

[65] Peisen Yao, Qingkai Shi, Heqing Huang, and Charles Zhang. 2020. Fast bit-vector satisfiability. In Proceedings of the
29th ACM SIGSOFT International Symposium on Software Testing and Analysis. 38–50. doi:10.1145/3395363.3397378

[66] Peisen Yao, Qingkai Shi, Heqing Huang, and Charles Zhang. 2021. Program analysis via efficient symbolic abstraction.

Proc. ACM Program. Lang. 5, OOPSLA (2021), 1–32. doi:10.1145/3485495

[67] Yongho Yoon, Woosuk Lee, and Kwangkeun Yi. 2023. Inductive program synthesis via iterative forward-backward

abstract interpretation. Proceedings of the ACM on Programming Languages 7, PLDI (2023), 1657–1681. doi:10.1145/
3591288

Received 2024-10-27; accepted 2025-03-31

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA030. Publication date: July 2025.

https://doi.org/10.1007/978-3-319-52234-0_27
https://doi.org/10.1007/978-3-540-74061-2_8
https://doi.org/10.1145/3627703.3629562
https://doi.org/10.1145/3368826.3377927
https://doi.org/10.1109/CGO53902.2022.9741267
https://doi.org/10.1007/978-3-031-37709-9_12
https://github.com/google/syzkaller
https://github.com/google/syzkaller
https://doi.org/10.1145/3453483.3454068
https://doi.org/10.1145/3395363.3397378
https://doi.org/10.1145/3485495
https://doi.org/10.1145/3591288
https://doi.org/10.1145/3591288

	Abstract
	1 INTRODUCTION
	2 PRELIMINARY
	3 MOTIVATION
	4 BIT-LEVEL ABSTRACTION
	4.1 Generalizing tnum Abstraction
	4.2 Signedness-aware Extension

	5 WORD-LEVEL ABSTRACTION
	5.1 Domain Representation
	5.2 Domain Operators and Transfer Functions

	6 COMBINING BIT-LEVEL AND WORD-LEVEL ABSTRACTIONS
	6.1 Reduced Product Operator Design
	6.2 Soundness and Optimality

	7 EVALUATION
	7.1 RQ1. Analyzing Loop Programs without Bit-Vector Operations
	7.2 RQ2. Analyzing Hardware-Related Programs with Intensive Bit-Vector Operations
	7.3 RQ3. Analyzing eBPF Programs

	8 DISCUSSIONS
	9 RELATED WORK
	10 CONCLUSION
	11 DATA AVAILABILITY
	Acknowledgments
	References

