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This paper concerns the scalability challenges of symbolic abstraction: given a formula φ in a logic L and an

abstract domainA, �nd amost precise element in the abstract domain that over-approximates the meaning ofφ.
Symbolic abstraction is an important point in the space of abstract interpretation, as it allows for automatically

synthesizing the best abstract transformers. However, current techniques for symbolic abstraction can have

di�culty delivering on its practical strengths, due to performance issues.

In this work, we introduce two algorithms for the symbolic abstraction of quanti�er-free bit-vector formulas,

which apply to the bit-vector interval domain and a certain kind of polyhedral domain, respectively. We

implement and evaluate the proposed techniques on two machine code analysis clients, namely static memory

corruption analysis and constrained random fuzzing. Using a suite of 57,933 queries from the clients, we

compare our approach against a diverse group of state-of-the-art algorithms. The experiments show that

our algorithms achieve a substantial speedup over existing techniques and illustrate signi�cant precision

advantages for the clients. Our work presents strong evidence that symbolic abstraction of numeric domains

can be e�cient and practical for large and realistic programs.
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1 INTRODUCTION

Abstract interpretation is a general theory for constructing sound static analysis by approxima-

tion [Cousot and Cousot 1979a]. At its heart stands the concept of abstract domain, a mathematical

representation of the program semantics. For instance, numerical domains such as octagon [Miné

2006] and polyhedron [Cousot and Halbwachs 1978] capture the numerical properties of program

variables. Such information is useful for proving the absence of bu�er over�ow, division by zero,

and many other properties [Blanchet et al. 2003; Singh et al. 2017a, 2015].
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1.1 Symbolic Abstraction

Given an abstract domain, the program analysis designers must provide abstract transformers that

over-approximate the concrete semantics of various program statements, such as assignments and

conditionals. A fundamental problem in abstract interpretation is to construct the best, i.e., the
most precise abstract transformer [Cousot and Cousot 1979a]. In their seminal work, Reps et al.

[2004] introduce the problem of symbolic abstraction, which uses decision procedures for automatic

construction of best transformers. Speci�cally, given a formula φ ∈ L encoding the concrete

semantics, and an abstract domain A, symbolic abstraction computes a most precise element in A

that over-approximates themeaning ofφ. To date, symbolic abstraction has foundmany applications,

such as shape analysis [Reps et al. 2004; Yorsh et al. 2004], program veri�cation [Jiang et al. 2017; Li

et al. 2014], control �ow recovery [Barrett and King 2010], and compiler optimization [Ritter 2015].

Conventionally, the abstract transformer for a block of code is obtained by composing the

block’s individual statements’ abstract transformers. In comparison, the salient merit of symbolic

abstraction is allowing for encoding the block as a formula φ, and analyzing the block as a whole

to obtain the (best) abstract transformer.

Our target application is program analysis for low-level instructions such as assembly and

x86, where the operators are built out of successions of small elementary instructions. On the

one hand, analyzing low-level code allows reasoning about the actual behaviors of an executable

program more faithfully, because the semantics of elementary low-level instructions are usually

fairly well-de�ned [Dasgupta et al. 2019]. In contrast, the compiling processes of higher-level

languages may leave signi�cant leeway (known as the “What You See Is Not What You eXecute”

phenomenon [Gopan and Reps 2007]). On the other hand, however, analyzing the low-level in-

structions is challenging and tedious, due to the reduced size of the code window used for transfer

functions [Logozzo and Fähndrich 2008]. Therefore, it is important to be able to analyze program

blocks as a whole, not as the composition of a succession of independent instructions [Barrett and

King 2010; Brauer and King 2010]. Symbolic abstraction presents a way to tame the complexity by

o�ering two key bene�ts:

• Precision. It is well known that abstract interpretation is not compositional, meaning that

the composition of the best abstract transformers of individual statements in a sequence

may not result in the best abstract transformer for the whole sequence [Cousot and Cousot

1979a]. To see how symbolic abstraction can yield better results than creating abstract

transformers by composition, consider performing interval analysis on the code snippet:

x ∈ [0, 1];y = x ; z = x −y. The interval of z, obtained from those for x and y by applying the

rules of conventional interval arithmetics
1
, is z ∈ [−1, 1]. However, the optimal interval, i.e.,

best abstraction is z ∈ [0, 0], which can be computed via symbolic abstraction.

• Automation. Conventionally, the static analysis developers need to design, implement, and

tune abstract transformers for various program instructions, which can be tedious and error-

pone. For example, a standard implementation of the polyhedral domain contains more than

40 operators [Singh et al. 2017b]. In contrast, symbolic abstraction allows for synthesizing

a (correct and precise) abstract transformer for a block of code, instead of independently

designing and composing abstract transformers for di�erent instructions.

Despite the promise, however, there is a performance gap for current symbolic abstraction

technology to be practical for real-world and large-scale programs. In theory, symbolic abstraction is

computationally expensive. For instance, the best transformers for assignments in weakly relational

domains such as octagon have the same worst-case exponential complexity as the polyhedral

1
For instance, the statement z = x + y is abstracted as zmax = xmax + ymax and zmin = xmin + ymin.
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domain [Singh et al. 2017b]. In practice, symbolic abstraction faces the scalability issue that limits

its adoption. For example, it was reported that a state-of-the-art algorithm that symbolically

computes best transformers for the a�ne-relation domain (ARA) can be more than 50× slower than

a conventional method for computing sound, but not necessarily the best ARA transformers [Thakur

and Reps 2012].

Recent advances in Optimization Modulo Theory (OMT) solving [Bjørner et al. 2015; Li et al.

2014; Nadel and Ryvchin 2016; Sebastiani and Trentin 2015a] provide new insights into the symbolic

abstraction of template linear domains [Jiang et al. 2017; Li et al. 2014]. However, OMT is a young

technology with large margins for improvement [Sebastiani and Trentin 2015a], and we observe that

many real-world symbolic abstraction problems pose challenges to state-of-the-art OMT solvers.

Besides, existing OMT-based solutions for symbolic abstraction are not directly applicable to the

polyhedral domain (conjunctions of linear inequalities), because both the number of inequalities

and the coe�cients in each inequality are unknown prior.

1.2 Our Work

This paper aims to speed up the symbolic interval and polyhedral abstractions of quanti�er-free

bit-vector formulas. Our key technical insight is two-fold. First, the variables in programs are

often correlated. Second, the interval and polyhedral domains in the bit-vector arithmetic are

bounded. Taken together, they allow us to reduce the search space of symbolic abstraction. The

main challenge, however, is how to e�ectively leverage the correlations and boundedness for

reducing redundant computations.

We �rst present an analysis for computing the best interval abstraction. Our approach �rst

conducts a static analysis to infer a sound abstraction, followed by an SMT-based re�nement

that iteratively �nds the optimal intervals. Crucially, the second step re�nes all the variables

synergistically, reusing information between them to speed up the analysis. Using our interval

analysis, we then introduce a symbolic polyhedral analysis that interleaves the computations of

intervals and polyhedrons. Our analysis builds on a novel integral polyhedral domain for bit-vector

arithmetic (detailed in § 2.3). The key idea of the analysis is to utilize the interval abstractions to

approach more “extremal” points near to the enclosing convex shape, which is a bounded integral

polyhedron. Our algorithm opens up a new connection between OMT and symbolic abstraction,

which allows for bringing OMT solving techniques to symbolic polyhedral abstraction.

We have implemented the proposed techniques as a tool called Taichi, and applied it in two

applications of machine code analysis, namely static memory corruption analysis and constrained

random fuzzing. Using 57,933 symbolic abstraction queries from the clients, we compare our

techniques against two classes of algorithms from OMT solving and symbolic abstraction literature,

respectively. The �rst class computes the best interval abstraction via OMT solving. We evaluate

three OMT solvers that are based on MaxSAT solving [Nadel and Ryvchin 2016; Narodytska

and Bacchus 2014] and that reduce to quanti�ed formulas (e.g., [Kong et al. 2018]). The second

class computes the best polyhedral abstraction, including algorithms due to Reps et al. [2004]

(RSY), Thakur and Reps [2012] (TR), and Thakur et al. [2012] (TER).

This paper makes the following contributions to the symbolic abstraction of numeric domains:

• We present an e�cient algorithm for symbolic interval abstraction. Our algorithm is on

average 2.1× to 17.6× faster than several state-of-the-art OMT solvers.

• We present an e�cient algorithm for the problem of symbolic polyhedral abstraction (as

de�ned in § 2.3). When evaluated on non-over�owing formulas, our analysis is on average

3.6×, 2.6×, and 2.4× faster than RSY, TR, TER, respectively, and it solves more queries than

the other three algorithms.
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• We implement the proposed algorithms and demonstrate their usability for static memory

corruption analysis and constrained random fuzzing.

2 BACKGROUND AND PROBLEM FORMULATION

This section introduces the background knowledge (symbolic abstraction and optimization modulo

theories) and de�nes the problems we address in the paper.

2.1 Symbolic Abstraction

Abstract Interpretation. Let (C, ≤C ) and (A, ≤A) be two complete lattices, a paired abstraction

function α : C → A and concretization function γ : A→ C forms a Galois connection between C
and A if for any c ∈ C and a ∈ A, we have α (c ) ≤A a ⇔ c ≤C γ (a). We call A = 〈A, ≤A,t,α ,γ 〉
an abstract domain with the join operator t and the partial order relation ≤A. Given a concrete

transfer function f : C → C , we say an abstract function f # : A→ A is a sound abstraction of f if

α ( f (c )) ≤A f # (α (c )) for any c ∈ C . We say an abstract function f α is the best abstraction of f in

A i� f α = α ◦ f ◦ γ : A→ A, because for any sound abstraction f # it holds that f α (a) ≤A f # (a)
for any a ∈ A.

Symbolic Abstraction. The above equation f α = α ◦ f ◦ γ de�nes the limit of precision

obtainable using the abstract domainA. However, the de�nition is non-constructive, in that it does

not provide an algorithm for deriving the best transfer function.

In their seminal work, Reps et al. [2004] introduce a framework for computing f α , which applies

to a formula φ in a logic L and an abstract domain A = 〈A, ≤,t,α ,γ 〉. The formula φ encodes the

concrete semantics, such as the concrete transformer for an instruction, basic block, or loop-free

program fragment. The goal of symbolic abstraction is to �nd the strongest consequence of φ that

is expressible in A. More precisely,

De�nition 2.1. (Symbolic Abstraction) Given a formula φ ∈ L and an abstract domainA = 〈A, ≤
,t,α ,γ 〉, and let ~φ� be the set of concrete states satisfying φ. The symbolic abstraction of φ in the

domainA, is an element a ∈ A such that (1) a over-approximates the meaning of φ, i.e., ~φ� ⊆ γ (a),
and (2) for any a′ ∈ A for which ~φ� ⊆ γ (a′), we have a ≤ a′.

Example 2.2. Consider the integer formula φ (x ,y) ≡ x ≥ 0 ∧ y ≥ 0 ∧ x + y ≤ 10 where x and y
represent unbounded integers. The interval x ∈ [0,+∞] ∧ y ∈ [0,+∞] is a sound approximation of

φ in the interval domain, while x ∈ [0, 10] ∧ y ∈ [0, 10] is the best approximation.

2.2 Optimization Modulo Theories

In this paper, we consider �rst-order logic formulas of the satis�ability modulo theories (SMT).

Given a formula φ, we denote its free variables by vars (φ). A model M of φ (denoted M |= φ) is
a function that maps all free variables x1, . . . ,xn ∈ vars (φ) to values in their respective domains

such that φ evaluates to true. We denoteM (x ) by the value of the variable x under the modelM .

The problem of Optimization Modulo Theories (OMT) extends SMT by searching models that

optimize some objective functions. Recall that a general mathematical optimization problem can be

written as {
maximize f (x̄ )
subject to x̄ ∈ S ,

where f (x̄ ) is the objective, and S the search space. In the context of OMT, S is characterized by a

�rst-order formula φ in a background theory and f (x̄ ) is a term of the theory.

De�nition 2.3. (Boxed OMT Problem) Given an SMT formula φ and a set of objectives {д1, . . . ,дn },
the goal of the multiple-independent-objective OMT problem [Sebastiani and Trentin 2015b], a.k.a.
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boxed OMT is to �nd a set of models {M1, . . . ,Mn } of φ such that eachMi maximizes the objective

дi respectively.

Previous work [Jiang et al. 2017; Li et al. 2014] has shown that the symbolic abstraction of template

linear domains such as interval [Cousot and Cousot 1977], zone [Miné 2001], and octagon [Miné

2006] can be reduced to solving boxed OMT problems. Speci�cally, let ei (1 ≤ i ≤ n, where n is the

number of templates) be a template, we get ci by solving the OMT problem “max ei s .t . φ”, and thus
obtain ei ≤ ci as a constraint in the template abstract domain representation. Overall,

∧n
i=1 ei ≤ ci

gives the resulting constraint representation in the template abstract domain. For example, by

setting the template e as vars (φ) and their negation, we can obtain the symbolic abstraction of φ in

the interval domain.

Example 2.4. Consider the integer formula φ (x ,y) ≡ x ≥ 0∧y ≥ 0∧x +y ≤ 10 in Example 2.2. By

setting the template as {x ,y,−x ,−y} and solving the boxed OMT problem “max {x ,y,−x ,−y} s .t . φ”,
we can obtain the maximal/minimal values of x and y. Clearly, the symbolic abstraction of φ in the

interval domain is x ∈ [0, 10] ∧ y ∈ [0, 10].

2.3 Problem Formulation

While OMT-based formalization o�ers an elegant solution for the symbolic abstraction of template

linear domains, it faces several limitations in practice. First, it depends heavily on the performance

of the underlying OMT solvers, and we observe that many real-world symbolic abstraction instances

pose challenges to state-of-the-art solvers. Second, the formalization is not directly applicable to the

convex polyhedral domain [Cousot and Halbwachs 1978], i.e., conjunctions of linear inequalities

a1x1 + · · · + anxn ≤ c , because neither is the number of templates known before the analysis, nor

are the coe�cients in each template.

This paper concerns the connections between Optimization Modulo Theories and symbolic

abstraction. We focus on the theory of quanti�er-free bit-vector (QF_BV), because it allows for

modeling machine instructions faithfully and precisely, such as non-linear arithmetic computations

and “bit-twiddling” operations (left-shift, right-shift; bitwise-and, bitwise-or, and bitwise-xor;

etc.) [Alizadeh and Fujita 2009; Ganesh and Dill 2007; Lim and Reps 2013].

Problem Scope. Table 1 presents three abstract domains for bit-vector arithmetic, where v
denotes variables and ci denotes constants. Our work focuses on the �rst and third domains. The

bit-vector interval domain is similar to the conventional interval domain, except that ci and v are

bit-vectors. However, it is important to understand the distinction between the two di�erent but

related polyhedral domains. Speci�cally, we introduce a new domain for bit-vector arithmetic,

namely the integral polyhedral domain, which involves both integer and bit-vector reasoning. To

illustrate, let us �rst consider the following example.

Example 2.5. Consider a bit-vector formulaφ ≡ x ≥ 0∧y ≥ 0∧x+y ≤ 3 where x andy encode two
4-bit unsigned integers. Whenφ (x ,y) is interpreted in bit-vector arithmetic, it has 64 models, shown

as red points in Figure 1a. Note that φ (x ,y) is already a conjunction of three linear inequalities, and

thus is its own symbolic abstraction as a bit-vector polyhedron: i.e., φ ′ ≡ x ≥ 0∧y ≥ 0∧x +y ≤ 10

(equivalent to φ).
Now consider Figure 1b, which shows the same 64 models in red. These points can also be

considered as 64 integer models, where each integral model corresponds to a bit-vector model of φ,
and xZ and yZ are the integer variables corresponding to x and y, respectively. To over-approximate

these 64 points using linear inequalities over integers, we need a conjunction of seven inequalities,

as shown in Figure 1b, and listed explicitly in the caption of Figure 1b.
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(a) bit-vector polyhedral abstraction

φ ′ ≡ x ≥ 0 ∧ y ≥ 0 ∧ x + y ≤ 3.
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(b) Integral polyhedral abstraction

φ ′ ≡ 0 ≤ xZ ≤ 15 ∧ 0 ≤ yZ ≤
15 ∧ yZ ≤ 12 ∗ xZ + 3 ∧ xZ ≤ 12 ∗

yZ + 3 ∧ xZ + yZ ≤ 19.

Fig. 1. Symbolic abstractions of the bit-vector formula φ ≡ x ≥ 0 ∧ y ≥ 0 ∧ x + y ≤ 3 from Example 2.5.

In summary, the orange regions of Figure 1a and Figure 1b show the abstractions of φ in the

bit-vector polyhedral domain and integral polyhedral domain, respectively. Observe that the orange

region in Figure 1a (i.e., φ ′ ≡ x ≥ 0 ∧ y ≥ 0 ∧ x + y ≤ 3) is non-convex.

The above example illustrates a key di�erence between the two polyhedral domains. Any

element in the integral polyhedral domain must be a convex polyhedron (e.g., as the orange

region in Figure 1b). However, this is not the case for the bit-vector polyhedral domain, because a

conjunctive of bit-vector inequalities may describe a non-convex region (e.g., due to the presence

of over�ows [Sharma et al. 2013], as demonstrated in Figure 1a).

Now, to compare and contrast the two domains formally, we de�ne a lifting operation for models

of a bit-vector formula. Let ~φ�bv be the set of all models of a (satis�able) bit-vector formula φ.
Essentially, a bit-vector value is an integer modulo 2

w
, i.e., an integer in Z2w for some bit widthw .

Thus, we can maintain and leverage a dual interpretation of bit-vector values.

De�nition 2.6. (Integral Lifting of Bit-Vector Models) LetMbv ∈ ~φ�bv be a model of a bit-vector

formula φ, we say that

Mint = lift(Mbv)

is the integral model lifted from a bit-vector model Mbv , by mapping each bit-vector variable

v ∈ vars(φ) to a unique integer variable vZ and tracking the relations of their values.
2
We say that

~φ�int is the the set of all integral models that are lifted from ~φ�bv, i.e.,

~φ�int = {lift(Mbv) | ∀Mbv ∈ ~φ�bv}

Based on the de�nition above, we distinguish the corresponding two versions of symbolic

polyhedral abstraction problem for a bit-vector formula φ:

• Version 1: A sound bit-vector polyhedral abstraction of φ is a conjunction of linear bit-vector

formulas that cover all the models in ~φ�bv. The best abstraction is a conjunction of linear

bit-vector formulas ϕ for which (i) ~ϕ�bv ⊇ ~φ�bv, and (ii) there does not exist a conjunction

of linear bit-vector formulaψ such that ~ϕ�bv ) ~ψ �bv ⊇ ~φ�bv.

2
For example, let v be a n-bits unsigned bit-vector variable and vZ its corresponding integer variable. Suppose that

in a bit-vector model, bn−1, . . . , b0 are the values of the n bits in v . Then, the integer value of vZ can computed as

bn−1 × 2n−1 + bn−2 × 2n−2 + · · · + b0 × 20.
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Table 1. Three abstract domains for a bit-vector formula φ ∈ QF_BV. Each domain can be regarded as an

impoverished logic fragment L′ (compare with the full QF_BV logic or linear integer arithmetic). An element

a ∈ A can be represented as a formula φ ′ ∈ L′.

Domain A Logic L ′ Interpretation

Bit-vector interval inequalities of the form c1 ≤ v and v ≤ c2 ~φ ′� ⊇ ~φ�(φ ′ ∈ L ′)
Bit-vector polyhedron linear inequalities over bit-vectors ~φ ′� ⊇ ~φ�(φ ′ ∈ L ′)
Integral polyhedron linear inequalities over integers Detailed below

• Version 2: A sound integral polyhedral abstraction of φ is a conjunction of linear integer

formulas that cover all the models in ~φ�int. The best abstraction is a conjunction of linear

integer formulas ϕ for which (i) ~ϕ�int ⊇ ~φ�int, and (ii) there does not exist a conjunction of

linear integer formulasψ such that ~ϕ�int ) ~ψ �int ⊇ ~φ�int.

In this paper, we address Version 2 of the problem. Recall that any sound solution to Version

2, including the optimal solution, must be a convex polyhedron (discussed in Example 2.5). The

key bene�t of this property is that it allows us to pass the computed polyhedron to existing

algorithms for integer/real arithmetic, such as counting the number of models [Assarf et al. 2017],

sampling solutions [Chen et al. 2018], computing the volume [Dyer and Frieze 1988], and computing

the Hausdor� distance of two polyhedrons [Sankaranarayanan et al. 2006]. Such information is

bene�cial for many program analysis clients such as WCET analysis [Lisper 2003] and quantitative

information �ow [Biondi et al. 2018]. We will demonstrate one client in § 6.2.

Problem Statement. Based on the above discussion, our work aims to address the following

challenges in symbolic abstraction: Given a (satis�able) quanti�er-free bit-vector formula φ,

Challenge 1: Improve the performance of the OMT-based solution for computing the symbolic

abstraction of φ in the bit-vector interval domain.

Challenge 2: Lift OMT solving techniques to the polyhedral domain, and yield (more) e�cient

algorithms for the symbolic abstraction of φ in the integral polyhedral domain.

The key idea behind our work is that the variables in programs are often correlated, and the

interval and polyhedral domains in the bit-vector arithmetic are bounded. The correlations and

boundedness can be utilized to reduce redundant computations in symbolic abstraction. Speci�cally,

the analysis method presented in the paper addresses these challenges by the following means:

• Challenge 1 is addressed via an SMT-based symbolic interval analysis that iteratively �nds the

optimal intervals for di�erent variables synergistically, whereby the intermediate information

computed for di�erent variables is shared.

• Challenge 2 is addressed via a symbolic polyhedral analysis that interleaves the computations

of interval and polyhedron. The key idea is to utilize the optimal interval abstractions to

approach more “extremal” points near to the �nal integral polyhedron, which is bounded.

3 SYMBOLIC INTERVAL ABSTRACTION

In this section, we introduce our approach to symbolic interval abstraction. Without loss of gener-

ality, we formalize the problem as a boxed multi-objective optimization instance: given a �rst-order

formula φ and a set of objectives {д1, . . . ,дn }, compute the objectives’ maximal values.
3
For ease of

presentation, we use unsigned bit-vectors to demonstrate our approach.

3
Minimization problems can be reduced to maximization problems.
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Algorithm 1: SMT-based binary search for optimizing a single objective.

Input: A QF_BV formula φ and an objective д
Output: The maximum value of д s .t . φ

1 Function optimize_one_obj(φ,д)
2 ret, low, high← . . .;
3 while low ≤ high do
4 mid← (low + high)/2;
5 ψ ← φ ∧ (mid ≤ д ≤ high);
6 if ψ is unsatis�able then
7 high← mid − 1;

8 else
9 M ← a model ofψ ; /* use M to update ret and low */

10 ret← M (д), low← ret + 1;

11 return ret ;

At a high level, our procedure consists of two steps. First, we leverage a sound and lightweight

interval analysis [Gange et al. 2015] to compute the initial abstractions of the variables. Second, we

perform a synergistic SMT-based re�nement until �nding all the maximum values of the variables.

In the following, we focus on illustrating the second step, which is the key to improving performance

while ensuring optimality.

3.1 Basic Binary Search

Our approach builds on the standard binary search schema. Algorithm 1 shows the basic procedure

for maximizing a single objective, which takes as input an initial lower bound and upper bound

(denoted “low” and “high” respectively). Since we target �xed-sized bit-vector formulas, any vari-

able is guaranteed to be bounded. The algorithm iteratively updates “low” and “high” using the

satis�ability results of φ ∧mid ≤ д ≤ hiдh (Lines 6-10), until the value of low is larger than high.4

Assume that the variable д encodes anm-bits unsigned integer. In the worst case, Algorithm 1

needs to call an SMT solverm times.

Example 3.1. Consider a bit-vector formula φ (x ) where x encodes a 3-bits unsigned integer. On

the �rst round of a binary search, we have low = 0,hiдh = 7, andmid = 4. Thus, Algorithm 1 needs

to solve the formula φ ∧ 4 ≤ x ≤ 7.

We remark that Algorithm 1 is similar to many other existing algorithms [Henry et al. 2014;

Köksal et al. 2012; Nadel and Ryvchin 2016; Sebastiani and Tomasi 2015a] that maximize/minimize

one objective subject to a formula. The focus of our symbolic interval analysis is to accelerate the

computation of multiple variables. Suppose we need to maximize n variables of a formula, where

each variable encodes anm-bits unsigned integer. A naive solution to the problem is Algorithm 2,

which invokes Algorithm 1 for n times. However, if the value of n is large, such a strategy can su�er

from performance issues, where little information is shared among di�erent variables.

4
Note that in Algorithm 1, we should replace mid = (low + high)/2 by mid = low + (high − low)/2 to avoid computing

incorrect mid-points due to over�ow. We show the previous one for simplicity.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 118. Publication date: October 2021.



Program Analysis via E�icient Symbolic Abstraction 118:9

Algorithm 2: Naive SMT-based binary search for optimizing multiple objectives.

Input: A QF_BV formula φ and a set of objectives G = {д1, . . . ,дn }
Output: The maximum values of д1, . . . ,дn s .t . φ

1 Function optimize_multi_obj(φ,G)
2 ret1, . . . , retn ← . . .;

3 foreach дi ∈ G do
4 reti ← optimize_one_obj(φ,дi ); /* invoke Algorithm 1 */

5 return ret1, . . . , retn ;

Algorithm 3: Solving the conjunctive predicate abstraction problem.

Input: A formula φ and a set of predicates S = {ϕ1, . . . ,ϕn }
Output: Decide the satis�ability of each φ ∧ ϕi (1 ≤ i ≤ n)

1 Function decide_cpa(φ, S)
2 while S , ∅ do
3 Ψ ←

∨
ϕi ∈S ϕi ; /* merge the predicates */

4 if φ ∧ Ψ is unsatis�able then
5 foreach ϕi ∈ S do
6 mark φ ∧ ϕi as unsatis�able;

7 return;

8 else
9 M ← a model of φ ∧ Ψ; /* use M to filter ϕi */

10 foreach ϕi ∈ S do
11 if M |= ϕi then
12 mark φ ∧ ϕi as satis�able;

13 remove ϕi from S ;

3.2 Factorizing the Search

Our idea for improving the performance of multi-objective optimization is to handle the variables

simultaneously, during which we reuse information computed for di�erent variables. Recall that

when dealing with a set of objectives, Algorithm 2 needs to solve a number of SMT queries

{φ ∧ t1, . . . ,φ ∧ tn }, where ti is of the formmidi ≤ дi ≤ hiдhi . Essentially, we are dealing with the

following question, which we term as the problem of “conjunctive predicate abstraction”:

Given a formula φ and a set of predicates S = {ϕ1, . . . ,ϕn }, decide for each ϕi ∈ S , if φ ∧ ϕi is
satis�able or not.

The problem is actually prevalent in program analysis and veri�cation tasks. Simply feeding

each φ ∧ ϕi to the solver can be ine�cient, if the size of S is large and there are many instances of

such queries. To potentially reduce the number of SMT solver calls, we utilize Algorithm 3 to solve

such problems. The algorithm repeats the following steps until all predicates in S are decided.

(1) First, we construct a formula Ψ (Line 3) as the disjunction of all undecided predicates in S .
Clearly, φ ∧ Ψ is an over-approximation of each φ ∧ ϕi .
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(2) If φ ∧ Ψ is unsatis�able, then for all ϕi ∈ S , we have that φ ∧ ϕi is unsatis�able (Line 6).
Algorithm 3 can terminate here.

(3) Else, we extract a modelM of φ ∧ Ψ, and test ifM |= ϕi for each ϕi . If this is the case, we can
mark φ ∧ ϕi as satis�able and remove ϕi from S for further consideration (Lines 9-13).

Note that, we do not have to start the solver from scratch in each iteration, by utilizing the

incremental solving techniques (such as phase saving and clause learning) in modern SMT solvers.

Example 3.2. Consider a bit-vector formula φ ≡ x ≤ 2 ∧ · · · ∧ y ≤ 3 where x and y encode two

3-bits unsigned integers. At the �rst round of the binary search, we need to decide the satis�ability

of φ ∧ 4 ≤ x ≤ 7 and φ ∧ 4 ≤ y ≤ 7, respectively. Using Algorithm 3, we construct a formula

φ ∧ (4 ≤ x ≤ 7 ∨ 4 ≤ y ≤ 7), which is unsatis�able. Thus, we have that both φ ∧ 4 ≤ x ≤ 7 and

φ ∧ 4 ≤ y ≤ 7 are unsatis�able.

Proposition 1. Assuming k out of the n formulas in S can be satis�ed in conjunction with φ, then
Algorithm 3 needs at mostmin(k + 1,n) times of SMT calls.

Proof. (1) Assuming k + 1 ≤ n. First, deciding the n − k unsatis�able formulas needs only the

last SMT call. Second, at each round before the last iteration, at least one formula can be decided.

Thus, the worst-case number of SMT calls is k/1 + 1 = k + 1. (2) Assuming k + 1 > n (i.e., k = n).
Since at least one formula can be decided after every SMT call, the worst-case number of SMT calls

is n/1 = n. Taken (1) and (2) together, we conclude that Algorithm 3 needs at mostmin(k + 1,n)
times of SMT calls. �

3.3 Pu�ing It All Together

Algorithm 4 shows the overall procedure to optimizing multiple objectives. Given a quanti�er-free

bit-vector formula φ and a set of objectives G to maximize, it �rst extracts an initial abstraction

with a sound interval analysis [Gange et al. 2015] (Line 2), and then performs the SMT-based binary

search to obtain the optimal values (Lines 3-13).

The key idea behind Algorithm 4 is to reuse information computed for one variable in order to

speed up the optimization of other variables. This feature allows us to reduce the search space and

avoid repeating expensive SMT calls. For instance, if a modelM1 indicates a maximal value for x ,
then a modelM2 for a maximal value of y must also satisfyM2 (y) ≥ M1 (y). Thus, we can possibly

update both highx and highy within one SMT solver call.

Speci�cally, Algorithm 4 utilizes the sub-procedure decide_cpa_ext to enable sharing informa-

tion among the variables (Lines 14-27). The sub-procedure is essentially an extension of Algorithm 3.

Observe that decide_cpa_ext di�ers from Algorithm 3, in that it can update elements of S within

the iteration (Lines 24-27). This is because in the binary-search-based algorithm, we can update

lowi immediately, once knowing that φ ∧midi ≤ дi ≤ highi is satis�able.

Proposition 2. Given a formula φ and n variables, each of which represents anm-bits unsigned

integer. The worst-case number of SMT calls required by Algorithm 4 is n ∗m.

Although the number of SMT calls can still be huge, we summarize a few properties of Algorithm 4.

First, the sound interval analysis in the �rst step can possibly reduce the value of m for some

variables. Second, during the second step, Algorithm 4 can update the information of 1 to n
variables with every SMT call. Third, when running out of a time budget, the algorithm may still

retrieve the optimal values for a subset of the variables. Speci�cally, during the binary search, it

can check if lowi > highi to decide if дi has been optimized.

Example 3.3. Consider a bit-vector formula φ ≡ x ≥ 0 ∧ y ≥ 0 ∧ x + y ≤ 3 where x and y encode

two 4-bit unsigned integers. Note that the bit-vector addition x + y may over�ow. Figure 2a and
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Algorithm 4: Optimized boxed multi-objective optimization.

Input: A QF_BV formula φ and a set of objectives G = {д1, . . . ,дn }
Output: The maximal values of д1, . . . ,дn s .t . φ

1 Function optimize_multi_obj(φ,G)
2 initialize lowi , highi , reti with an interval analysis [Gange et al. 2015];

3 while true do
4 S ← ∅;

5 foreach дi ∈ G do
6 if lowi ≤ highi then
7 midi ← (lowi + highi )/2;
8 S ← S ∪ {midi ≤ дi ≤ highi };

9 if S == ∅ then
10 break; /* all variables optimized */

11 else
12 decide_cpa_ext(φ, S); /* an extension of Algorithm 3 */

13 return ret1, . . . , retn ;

14 Function decide_cpa_ext(φ, S):
15 while true do
16 Ψ ←

∨
ϕi ∈S ϕi ; /* merge the predicates */

17 if φ ∧ Ψ is unsatis�able then
18 foreach ϕi ∈ S do
19 highi ← midi − 1;

20 return;

21 else
22 M ← a model of φ ∧ Ψ; /* use M to update lowi and midi */

23 foreach ϕi ∈ S do
24 if M |= ϕi then
25 reti ← M (дi ), lowi ← reti + 1;
26 midi ← (lowi + highi )/2;
27 ϕi ← midi ≤ дi ≤ highi ;

Figure 2b demonstrate the e�ects of over�ows on our algorithm. The red points depict the models

of the formula. The orange regions show the results of symbolic interval abstractions. Speci�cally,

if considering over�ows, φ can have some “additional models” such as (15, 1) and (1, 15), as shown
in Figure 2b. Consequently, the symbolic interval abstraction of φ is x ∈ [0, 15] ∧ y ∈ [0, 15].

By default, we consider the over�ow semantics. Thus, our algorithm can compute the abstraction

as x ∈ [0, 15] ∧ y ∈ [0, 15] (Figure 2b). We will discuss more about the handling of over�ow in § 5.

4 SYMBOLIC POLYHEDRAL ABSTRACTION

In this section, we introduce our approach to symbolic polyhedral abstraction, which builds on the

RSY algorithm [Reps et al. 2004] and uses the interval abstraction algorithm presented in § 3 as a
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Fig. 2. Symbolic interval abstraction of the bit-vector formula φ ≡ x ≥ 0 ∧ y ≥ 0 ∧ x + y ≤ 3. The red points

are the models. The orange regions are the symbolic interval abstractions.

Algorithm 5: RSY algorithm for symbolic abstraction [Reps et al. 2004].

Input: A formula φ and an abstract domain A

Output: The symbolic abstraction a of φ in A

1 Function rsy(φ,A)
2 ψ ← φ,a ← ⊥;

3 whileψ is satis�able do
4 M ← a model ofψ ;

5 a ← a t α (M ); /* use the model M to update the current abstraction */

6 ψ ← ψ ∧ ¬γ (a); /* bock the models covered by the updated abstraction */

7 return a;

sub-procedure. We �rst illustrate the RSY algorithm and use an example to motivate our algorithm.

We then introduce our algorithms that interleave the computations of intervals and polyhedrons.

Notice. In this section, we assume dealing with bit-vectors with a signed interpretation. The

symbolic interval analysis algorithm (§ 3) can easily be extended to support signed bit-vectors.

4.1 The RSY Algorithm

Algorithm 5 presents the Reps, Sagiv, and Yorsh (RSY) [Reps et al. 2004]’s parametric approach to

symbolic abstraction. It takes as input a formula φ and an abstract domain A, and yields the most

precise element a ∈ A that over-approximates the concrete states described by φ. The algorithm
keeps a lower bound ret of the correct result, and iteratively re�nes ret until it is no longer an

under-approximation of the result. More speci�cally, each iteration of the algorithm has two steps:

• Sampling: this step invokes the decision procedure to generate a model of φ (Line 4).

• Generalization: this step generalizes the current abstraction of φ with the sampled model

(Line 5), and adds the blocking formula to bock the models that can be covered by the updated

abstraction (Line 6).

Essentially, Algorithm 5 starts from the lattice ⊥ to the lattice >. The algorithm iteratively

enumerates and generalizes the models of a formula φ, until the abstraction “encompasses” all
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models of φ. In the worst case, Algorithm 5 requires h calls to a decision procedure, where h is the

chain-length of the respective abstract domain A.

Example 4.1. Consider a bit-vector formula φ (x ) where x encodes an 8-bit signed integer. Suppose

that φ has the following set of 32 models:

{(~x� = −1), (~x� = 0), (~x� = 1), . . . , (~x� = 30)} .

The symbolic interval abstraction of formula is x ∈ [−1, 30]. To motivate our approach, let us run

Algorithm 5 on the formula for the interval domain. At the �rst iteration, assume that the SMT

solver yields a model M1 = (~x� = −1), which induces −1 ≤ x ≤ −1. At the next iteration, the
formula φ ∧ ¬(−1 ≤ x ≤ −1) is passed to the solver, possibly yielding a model M2 = (~x� = 0)
that de�nes a constraint −1 ≤ x ≤ 0. Proceeding as before, the algorithm requires 32 solver calls to

converge onto the �nal abstraction −1 ≤ x ≤ 30.

However, Algorithm 5 could have computed the abstraction −1 ≤ x ≤ 30 in three iterations.

assuming that the SMT solver returned models M1 = (~x� = −1) and M2 = (~x� = 30) that
de�ne x = −1 and x = 30, respectively. At the last iteration, the SMT solver is used to prove that

φ ∧ ¬(−1 ≤ x ≤ 30) is unsatis�able, i.e., φ |= −1 ≤ x ≤ 30.

As illustrated in the example above, Algorithm 5 needs to iteratively sample the models of the

formula φ. The speci�c models yielded by the decision procedure a�ect the e�ciency of Algorithm 5

largely, as they determine the search direction of the algorithm.

4.2 Our Approach

On Mixing Integer and Bit-vector Reasoning. Recall that we aim to compute the integral

polyhedral abstraction of a bit-vector formula φ (§ 2.3), and our approach builds on the RSY

algorithm. A di�culty is that the problem would involve the mixing of bit-vector and integer

reasoning. On the one hand, we need to iteratively sample models of the bit-vector formula. On the

other hand, we need to compute the convex hull of a set of integer models, which can be represented

as a conjunction of linear integer formulas. The bit-vector and integer constraints would “interfere

with each other” in a RSY-style algorithm. Thus, solving the problem necessitates a mechanism for

(1) (model-theoretically) communicating the information between ~φ�bv and their integral lifting

~φ�int, and (2) (proof-theoretically) mixing the reasoning of formulas in the bit-vector and linear

integer theories.

As sketched in § 2.3, the idea underlying our solution is to maintain a dual interpretation of

bit-vector values. Conceptually, we can create an integer variable vZ for each bit-vector variable

v , which allows us to convert models between ~φ�bv and ~φ�int, and express both bit-vector and

integer constraints. The relation between v and vZ can be tracked in many di�erent ways. In our

implementation, we use the bv2int function supported by the Z3 SMT solver, by explicitly creating

an extra constraint vZ = bv2int (v ).
5
By doing so, we can encode polyhedral constraints using vZ,

and use the solver to sample models in ~φ�bv and ~φ�int simultaneously.

Abstraction from Intervals. Algorithm 6 outlines our �rst attempt, which takes as input a

formula φ and initializes the polyhedral abstraction to ⊥. The key idea behind the algorithm is

to �nd “extremal” models that represent vertex closer to the �nal convex polyhedron. Compared

with the temporal polyhedrons generalized with an arbitrary model, the polyhedrons induced

by the extremal models can possibly cover more models of the formula, thereby speeding up the

convergence of symbolic abstraction.

5
In the SMT-LIB2 standard, the function is called “bv2nat”. For interested readers, we refer to http://smtlib.cs.uiowa.edu/

theories-FixedSizeBitVectors.shtml.
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Algorithm 6: Polyhedral abstraction with symbolic intervals.

Input: A QF_BV formula φ with n variables

Output: The symbolic polyhedral abstraction of φ
1 Function polyhedral_abs_from_interval(φ, S)
2 foreach v ∈ vars (φ) do
3 φ ← φ ∧vZ = bv2int (v ); /* maintain a dual interpretation of φ’s models */

4 p ← ⊥;

5 while φ ∧ ¬p is satis�able do
6 c ← ∅;

7 foreach v ∈ vars (φ) do
8 [l ,u]← symbolic interval abstraction of v s .t . φ ∧ ¬p;

9 Ml ← the model that maximizes v ;

10 Mu ← the model that minimizes v ;

11 c ← c ∪ {(Ml (v1Z ), . . . ,Ml (vnZ )), (Mu (v1Z ), . . . ,Mu (vnZ ))};

12 p ← p t α (c ); /* update the current abstraction via polyhedral join */

13 return p;
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Fig. 3. Major steps for computing the integral polyhedral abstraction of a bit-vector formula φ that has 9

models {(4, 4), (3, 2), (2, 2), (1, 0), (0, 0), (−1, 0), (−2,−2), (−3,−2), (−4,−4)}.

However, obtaining such models is non-trivial because the forms of the inequalities in the

polyhedral abstraction are not known prior. The solution of Algorithm 6 is to utilize symbolic

interval abstractions to sample the “extremal” models. More speci�cally, we compute the interval

abstractions ofvars (φ) subject to φ∧¬p, and utilize the models under whichvars (φ) are minimal or

maximal (Lines 8-10). Then, the extremal models are collected in a set c , which is used to update the

abstraction p via polyhedral join (Line 12). In summary, Algorithm 6 utilizes interval abstractions

to control the distribution of the sampled models, instead of enumerating arbitrary points (as in

Algorithm 5 [Reps et al. 2004]).

However, Algorithm 6 has a major obstacle to scalability, namely the interval abstractions

(Lines 8). To speed up the computations, we leverage the interval abstraction algorithm introduced

in § 3, which optimizes the variables simultaneously (the inner loops in Lines 7-11).
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Example 4.2. Consider a bit-vector formula φ where x and y encode signed integers. Suppose

that the set of models ~φ�int are depicted as the red points in Figure 3, which include

{(4, 4), (3, 2), (2, 2), (1, 0), (0, 0), (−1, 0), (−2,−2), (−3,−2), (−4,−4)}

Next, we run Algorithm 6 to compute the integral polyhedral abstraction of φ.
At the �rst iteration, we compute the symbolic interval abstractions of x and y subject to φ

and obtain two integral models, M1 = (~xZ� = 4, ~yZ� = 4) and M2 = (~xZ� = −4, ~yZ� = −4),
because x and y have maximum/minimum values under their corresponding bit-vector models.

6

The polyhedral abstraction fromM1 andM2 are de�ned as below (see Figure 3a):

p1 = α (M1 (xZ),M1 (yZ),M2 (xZ),M2 (yZ)) =




yZ ≥ −4 ∧

yZ ≤ 4 ∧

yZ = xZ

(1)

At the second iteration, we start with φ ∧¬p1 and obtain two modelsM3 = (~xZ� = 3, ~yZ� = 2)
andM4 = (~xZ� = −3, ~yZ� = −2). The convex hull of the models is joined with p1, yielding the
following polyhedron (see Figure 3b):

p2 =

{
yZ ≤ 2 ∗ xZ + 4 ∧ yZ ≥ 2 ∗ xZ − 4 ∧

7 ∗ yZ ≤ 6 ∗ xZ + 6 ∧ 7 ∗ yZ ≥ 6 ∗ xZ − 4
(2)

At the third iteration, we start with φ ∧ ¬p2, obtaining two modelsM5 = (~xZ� = 1, ~yZ� = 0) and
M6 = (~xZ� = −1, ~yZ� = 0). Similarly, we abstractM5 andM6 as a convex polyhedron and then

join the polyhedron with p2, yielding the following polyhedron (see Figure 3c)

p3 =




yZ ≤ 2 ∗ xZ + 4 ∧ yZ ≥ 2 ∗ xZ − 4 ∧

yZ ≤ xZ + 1 ∧ 5 ∗ yZ ≥ 4 ∗ xZ − 4 ∧

5 ∗ yZ ≤ 4 ∗ xZ + 4 ∧ yZ ≥ xZ − 1

(3)

Finally, we �nd that φ ∧ ¬p3 is unsatis�able (i.e., φ |= p3) and, thus, Algorithm 6 terminates with

a sound abstraction. As shown in Figure 3c, all models in ~φ�int (i.e., the integral lifting of ~φ�bv)
have been encompassed by the �nal abstraction p3.

Interleaving Algorithm 6 and RSY. Algorithm 6 utilizes symbolic interval abstractions to

sample “extremal” models, aiming to converge within fewer iterations. However, obtaining an

optimal polyhedral abstraction via Algorithm 6 may still be prohibitively expensive. For example,

consider a bit-vector formula φ ≡ −5 ≤ x ≤ 5∧ x2 +y2 = 25. Figure 4 shows ~φ�int that consists of
12 models:

{(5, 0), (4, 3), (3, 4), (0, 5), (−3, 4), (−4, 3), (−5, 0), (−4,−3), (−3,−4), (0,−5), (3,−4), (4,−3)}

As shown in the �gure, the models characterize a Dodecagon. Algorithm 6 can �nish computing

the best polyhedral abstraction in four iterations (Figures 4a-4c depict the results after the �rst,

second, and third iterations). As can be seen, if running Algorithm 6 on the instance, we end up

enumerating all the points in the Dodecagon using the (expensive) interval abstraction algorithm.

Such a strategy can be very costly, if the number of models/points in the �nal polyhedron is huge.

Before presenting our �nal algorithm, let us consider running the RSY algorithm (Algorithm 5)

on the formula in Figure 4c. Any model given by the SMT solver yields a vertex of the �nal convex

polyhedron, because all models are vertices of the Dodecagon. As such, the intermediate models

6
Note that in theory, the inner loops in Lines 7-11 (Algorithm 6) need to compute four models of φ , if it optimizes each

variable one by one. In practice, we only compute two as we can optimize di�erent variables simultaneously. For example,

the bit-vector model corresponding to M1 = (~xZ� = 4, ~yZ� = 4) can both maximize x and y .
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Fig. 4. A bit-vector formula φ ≡ −5 ≤ x ≤ 5 ∧ −5 ≤ y ≤ 5 ∧ x2 + y2 = 25 that has 12 models, and the major

steps to computing its integral polyhedral abstraction.

Algorithm 7: Polyhedral abstraction by interlving RSY and Algorithm 6.

Input: A QF_BV formula φ
Output: The symbolic polyhedral abstraction of φ

1 Function polyhedral_abs(φ)
2 foreach v ∈ vars (φ) do
3 φ ← φ ∧vZ = bv2int (v );

4 p ← ⊥;

5 while φ ∧ ¬p is satis�able do
6 c ← ∅;

7 if round_robin() then
8 ; /* same as Algorithm 6 */

9 for v ∈ vars(φ) do
10 [l ,u]← symbolic interval abstraction of v s .t . φ ∧ ¬p;

11 Ml ← the model that maximizes v ;

12 Mu ← the model that minimizes v ;

13 c ← c ∪ {(Ml (v1Z ), . . . ,Ml (vnZ )), (Mu (v1Z ), . . . ,Mu (vnZ ))};

14 p ← p t α (c );

15 else
16 ; /* the RSY mode (Algorithm 5) */

17 M ← a model of φ ∧ ¬p;

18 c ← c ∪ {(M (v1Z ), . . . ,M (vnZ ))};

19 p ← p t α (c );

20 return p;

computed by the RSY algorithm have similar e�ects to the ones in Algorithm 6. However, for other

formulas with many non-extremal models, RSY can end up sampling non-extremal points, and

require many rounds before converging to the desired answer.
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To summarize, the RSY algorithm samples one model with each SMT call, but the model may not

generalize well. Algorithm 6 uses symbolic interval abstractions to sample “extremal” models, which

generalize well but can be hard to compute. Therefore, our �nal solution, Algorithm 7, interleaves

the original RSY algorithm (Algorithm 5) with the interval-abstraction-based one (Algorithm 6),

which aims to balance the cost of sampling the models and the “quality” of the sampled models. In

our client, we have empirically experienced the best performance with one interval-abstraction

step after every k RSY iterations, always starting the search in the RSY mode.
7

Proposition 3. There exists a best integral polyhedral abstraction for any bit-vector formula φ,
which can be computed by Algorithms 5–7 (in the absence of timeouts).

8

Proof. The integral polyhedral domain of bit-vectors is bounded, because every bit-vector

formula has a �nite number of models. Thus, the set of integral models ~φ�int is �nite.
(1) (Existence) Given a �nite set of points X , by de�nition, the convex hull conv (X ) of X is the

smallest convex set containing X . Thus, we have that conv (~φ�int) is the best integral polyhedral
abstraction of the formula φ.

(2) (Computability) Essentially, Algorithms 5-7 compute the join of a �nite number of polyhedrons

p1, . . . ,pn , where each pi is the convex hull of a subset of ~φ�int. Let C1, . . . ,Cn be the nonempty

subsets of models enclosed by p1, . . . ,pn , respectively.
First, we prove that for any nonempty subsets A and B, the following equation holds:

conv (A ∪ B) = conv (conv (A) ∪ conv (B)) (4)

We observe the following three basic principles: (i) A ⊆ conv (A); and (ii) If B ⊆ A, then conv (B) ⊆
conv (A); (iii) conv (conv (A)) = conv (A). From (ii), we have conv (A) ⊆ conv (A ∪ B) and also

conv (B) ⊆ conv (A ∪ B), so

conv (A) ∪ conv (B) ⊆ conv (A ∪ B) (5)

By applying (ii) and (iii) to Equation 5, we have

conv (conv (A) ∪ conv (B)) ⊆ conv (A ∪ B) (6)

On the other hand, we have A ∪ B ⊆ conv (A) ∪ conv (B) and, therefore,

conv (A ∪ B) ⊆ conv (conv (A), conv (B)) (7)

Taking (6) and (7) together, we conclude that Equation 4 holds.

Second, using Equation 4, we can prove that the following equation holds

conv (C1 ∪ · · · ∪Cn ) = conv (conv (C1) ∪ · · · ∪ conv (Cn )) (8)

Observe that ~φ�int = C1 ∪ · · · ∪Cn . Hence Algorithms 5–7 can compute conv (conv (C1) ∪ · · · ∪
conv (Cn )) = conv (~φ�int), i.e., the best abstraction.

�

Remarks. To compute the best abstraction of φ, a naive strategy is to �rst enumerate all models

in ~φ�int, and then compute their convex hull. Essentially, Algorithms 5-7 optimize the naive

strategy by avoiding explicitly enumerating all the models, and by controlling the distributions of

the sampled models.

7
In our experiments, we set k as 10 for the polyhedral abstraction queries.

8
The proof is given in the extended version of the paper at https://tinyurl.com/w6ck5uub.
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5 ON OVERFLOW AND UNDERFLOW

An important and long-standing challenge in designing numeric domains is to to soundly track the

e�ects of arithmetic operations in machine integers, such as the wrap-around e�ects of operations

that over�ow [Blanchet et al. 2003; Bygde et al. 2012; Cousot and Halbwachs 1978; Gange et al.

2015; Sharma et al. 2013; Sharma and Reps 2017; Simon and King 2007]. To tame the complexity, the

quanti�er-free bit-vector theory (QF_BV) allows for faithfully modeling machine integer semantics,

such as bit-wise operations, over�ow, under�ow, and others.

Our work aims to compute the symbolic abstraction of QF_BV formulas and can account for the

machine integer semantics such as over�ow and under�ow. Take the handling of over�ow as an

example. First, the presence of over�ow does not break the assumption that the value range of a

bit vector is always �nite, which is a key to our algorithms. Second, our algorithms leverage the

SMT solver to sample the models of a formula, which can return models caused by over�ow. The

algorithms do not attempt to prune those models.

An Encoding Schema for Preventing Overflow/Underflow. However, as illustrated in Exam-

ple 3.3 (§ 3.3), the presence of over�ow or under�ow can a�ect the results of symbolic abstraction

greatly. Previous work [Ritter 2015] shows that for many applications such as compiler optimization,

it is practical to assume the absence of certain unde�ned behavior like signed integer over�ow.

Thus, given a bit-vector formula φ to abstract, it is desirable to allow for controlling the over�ow

and/or under�ow in the arithmetic computations in φ. In what follows, we present an encoding

schema for such application scenarios, using the handling of over�ow as an example.

Consider the formula φ ≡ y = 2 + x ∧ y > 10, where x and y encode signed 32-bits integers.

In practice, there are many ways to implement the assumption that a bit-vector operation such

as 2 + x does not over�ow. In our implementation, we have used a series of Z3 APIs, such as

bvadd_no_overflow and bvadd_no_overflow,9 to ensure that an SMT solver does not produce

models caused by over�ow. Speci�cally, we can rewrite φ as:

φ ′ ≡ y = 2 + x ∧ b = bvadd_no_overflow(2 + x ) ∧ y > 10

where the function Z3_bv_add_no_overflow(2 + x ) returns a Boolean-typed value indicating

whether the bit-vector addition leads to an over�ow. That is, the variable b is true if and only if

2 + x does not over�ow. Now, if we need to enforce the absence of over�ow, we can add a further

conjunction with b, which yields:

φ ′′ ≡ y = 2 + x ∧ b = bvadd_no_overflow(2 + x ) ∧ y > 10 ∧ b

Note that the above schema can also be used to enforce di�erent modes (regular, under�ow,

over�ow) for di�erent instructions. For example, we can prevent over�ows for the subset of

instructions that involve signed integers, but not for unsigned ones.

6 IMPLEMENTATION AND APPLICATIONS

We have implemented our approach as a tool called Taichi, using Z3 [De Moura and Bjørner

2008] as the SMT solver. Taichi treats the underlying SMT solver as a black box. This makes it

easy to implement and allows it to bene�t from future advances in SMT solving. We term the

analyses computing interval and polyhedral abstractions as TaichiInt and TaichiPoly, respectively.

We have applied TaichiInt and TaichiPoly in two machine code analysis clients, namely static

vulnerabilities detection and dynamic program testing, respectively.

9
The APIs are essentially wrappers of the standard bit-vector operations. For example, to track over�ows in a bit-vector

addition, we can just zero-extend bit-vector arguments by one. Then, we check whether the most signi�cant bit in the

output is 0. See https://github.com/Z3Prover/z3/blob/master/src/api/api_bv.cpp for more implementation details.
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6.1 Memory Corruption Analysis with TaichiInt

The �rst application is to enhance an abstract interpreter, which implements a memory corruption

analysis on top of the Angr binary analysis platform [Shoshitaishvili et al. 2016]. The implemented

analysis uses Angr to translate the binary code to VEX, the intermediate representation used by

Valgrind [Nethercote and Seward 2007]. We then perform both the conventional interval analysis

and the symbolic interval abstraction on top of the VEX intermediate representation.

At the core of the memory corruption analysis is a conventional statement-by-statement interval

analysis. The analysis has a high false-positive rate due to a lack of accuracy in the interval analysis.

For example, aliases of two memory accesses are determined by checking if their intervals share

common address values. This is similar to the value set analysis [Reps and Balakrishnan 2008]. The

imprecision of the interval information can result in many spurious aliasing relations.

As a remedy, we apply symbolic abstraction in a demand-driven style. If the conventional interval

analysis fails to verify some functions’ memory safety, we use TaichiInt to obtain a possibly more

precise interval. At a high level, we partition a program into several “SMT-expressible” and loop-free

blocks (as in “large block encoding” [Beyer et al. 2009]), and compute the �xed point based on

the “iteration+widening” strategy block by block. During the analysis, we translate the interval

representation of the pre-state to an SMT formula at the entry of the block, and translate the

post-state in SMT formula back to interval representation.

6.2 Constrained Random Fuzzing with TaichiPoly

Constrained random veri�cation [Kitchen and Kuehlmann 2007; Naveh and Metodi 2013; Wu and

Huang 2013] is widely used for validating hardware designs. The veri�cation engineers specify

the constraint required by the hardware and then generate multiple random inputs satisfying the

constraint using a stimulus generator. These inputs are used to drive the design under test, in an

attempt to cover the design space and trigger faults.

Recently, the idea has been lifted to dynamic program analysis, yielding the notion of constrained
random fuzzing [Dutra et al. 2018; Huang et al. 2020]. The basic observation is that many feasible

program paths share the same path pre�x. Constrained random fuzzing attempts to generate

multiple models for the path constraint of a selected path pre�x. These models/inputs can then

examine multiple program paths that share the same pre�x, without additional invocations of an

expensive constraint solver for each path.

We have adapted a previous approach that utilizes polyhedral abstraction in constrained random

fuzzing [Huang et al. 2020]. First, we compute the symbolic polyhedral abstraction of a satis�able

path constraint. By this means, we can convert the problem of generating models of the constraint

into the problem of sampling integral points in the polyhedron [Chen et al. 2018; Kannan and

Narayanan 2009, 2012].

Example 6.1. Consider the formula φ in Figure 5, and let it be the path condition of a selected

path pre�x. The red dots represent all feasible values satisfying φ, whereas the black crosses

represent the infeasible ones. The abstractions of φ are the orange regions bounded by the lines

representing multiple linear inequalities. Figure 5a depicts the template polyhedral abstraction

computed by Huang et al. [2020]’s approach, where the templates consist of (1) all variables in

vars (φ) and (2) linear expressions over vars (φ) that occur in the formula. In comparison, Figure 5b

shows the polyhedron computed by TaichiPoly.

As introduced above, constrained random fuzzing aims to generate models of the original formula

φ. Here, if we perform a uniform sampling of integral points in the two polyhedrons, the success

rate (the sampled points satisfy φ) would be 4/16 = 25% and 4/7 = 57%, respectively. Clearly,
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(a) The template polyhedron com-

puted by [Huang et al. 2020].
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(b) The polyhedron computed by

TaichiPoly.

Fig. 5. A formula φ ≡ (x = 0 ∧ y = 0) ∨ (x = 2 ∧ y = 3) ∨ (x = 3 ∧ (y = 1 ∨ y = 2)).

this examples shows that the precision advantage of TaichiPoly (Figure 5b) has the potential for

scalability bene�ts.

We implement the client on top of Qsym [Yun et al. 2018], a hybrid fuzzing framework that

combines symbolic execution and a mutational fuzzer (AFL [a� 2014]). The system uses AFL to test

most easy-to-cover branches quickly. For a hard-to-cover branch, we collect the path constraint

using Qsym’s symbolic execution engine, compute its polyhedral abstraction via TaichiPoly, and

apply a Markov Chain Monte Carlo sampling algorithm [Kannan and Narayanan 2009] to uniformly

sample points over the polyhedron. Note that, for this client, we enforce the absence of over�ows

in the formulas to be abstracted, using encoding schema presented in § 5. Thus, we end up with an

under-approximation that excludes some possible behaviors of the program from consideration.

7 EVALUATION

This section evaluates the performance of TaichiInt and TaichiPoly, and their e�ectiveness when

used in the two clients, memory corruption analysis and constrained random fuzzing.

Benchmarks. For the static memory corruption analysis, we use the DARPA’s Cyber Grand

Challenge (CGC) dataset [Song and Alves-Foss 2016], which consists of 131 di�erent binaries. The

sizes of those binaries range from 83 KB to 18 MB. These programs contain 28 heap over�ow

bugs, 24 stack over�ow bugs, 16 null pointer dereference bugs, 13 integer over�ow bugs, and

8 use-after-free bugs. The dataset is designed to exhibit diversi�ed and common code patterns,

and has been widely used as a test suite for automated vulnerability detection and exploitation

systems [Bao et al. 2017; Poeplau and Francillon 2020; Song and Alves-Foss 2015; Stephens et al.

2016]. We con�gure our tool to detect stack over�ow and use-after-free bugs. We impose a 60

second time limit for analyzing any individual function. If the analysis of a function times out, it is

regarded as a function that returns a nondeterministic value and has non-deterministic side-e�ects

on variables passed by reference.

For the constrained-random-fuzzing client, we have evaluated on ten binaries from eight projects,

including libjpg, jhead, MP42aac, tcpdump, Tiffops, nm-new, readelf, objdump, asn1parse, and
uniq. Table 2 shows the size, version, and input format of the projects and binaries. These binaries

have diverse functionalities and complexity, most of which have been widely evaluated by existing

fuzz testing tools [Chen and Chen 2018; Dolan-Gavitt et al. 2016; Yun et al. 2018]. We set a twenty-

four-hour time budget for testing each binary, and export the path constraints used for computing

the polyhedral abstractions.
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Table 2. Real-world benchmark programs for constrained-random fuzzing.

Project KLoC Binary Version Input format

libjpeg 289 libjpg commit-ec5adb JPG

jhead 5.4 jhead 3.03 JPG

bento4 180.0 MP42aac commit-cbebcc MP4

tcpdump 97.2 tcpdump commit-b5046f PCAP

libti� 119.3 Ti�ops 4.0.10 TIFF

binutils 764.7 nm-new 2.33 ELF

binutils 764.7 readelf 2.33 ELF

binutils 764.7 objdump 2.33 ELF

openssl 436.4 asn1parse commit-e8d01 ASN

coreutils 230.7 uniq LAVA-M TXT

In total, we collect 50,299 interval abstraction queries and 7,634 polyhedral abstraction queries,

respectively. The queries are exposed in SMT-LIB2 format, allowing us to compare with other

o�-the-shelf tools. Note that the SMT formulas generated by Angr and Qsym are translated from

VEX IR and x86 assembly, respectively.

Platform. We conduct the experiments on an 80-core 2.20 GHz CPU with 256 GB of memory

running Ubuntu 16.04. Though the processor is multi-core, the executables themselves are single-

threaded. We repeat each experiment ten times and report the average results.

7.1 Interval Abstraction

Be�er Performance than Existing Approaches to Symbolic Interval Abstraction. The state-
of-the-art approach to symbolic interval abstraction is to reduce it to OMT solving problems. In this

experiment, we compare TaichiIntwith three groups of techniques for solvingOMT instances in bit-

vector theory. In what follows, we brie�y illustrate the baseline approaches using the optimization

problem “max x s .t . φ”, where φ is a quanti�er-free bit-vector formula, and x encodes an n-bit bit
vector. We assume x is an unsigned integer to ease the explanation of the baseline approaches.

(1) Existing OMT solvers. Most state-of-the-art solvers reduce “max x s .t . φ” to a weighted

MaxSAT problem [Bjørner et al. 2015]. The above optimization problem is encoded as




Hard constraints translate φ to a SAT formula

Soft constraints




(t0 weight 1) ∧
(t1 weight 2) ∧

. . . ∧

(tn−1 weight 2
n−1)

within two steps. First, the formula φ is translated to a hard Boolean formula via bit-

blasting [Barrett and Tinelli 2018], where x is represented as a sequence of Boolean variables

[tn−1, . . . , t0]. Second, for each ti , soft weighted unit clause (ti ) of the weight 2
i
is added. Then,

the objective is to maximize the value of t0 ∗1+t1 ∗2+ · · ·+tn−1 ∗2
n−1

via an MaxSAT solving

algorithm. In the experiment, we evaluated two MaxSAT solving algorithms implemented in

νZ [Bjørner et al. 2015]: core-guided maximal resolution (MaxSAT(maxres)) [Narodytska

and Bacchus 2014], and Nadel and Ryvchin [2016]’s algorithm (MaxSAT(nadel)). We use the

boxed multi-objective optimization mode of νZ.
(2) Quanti�ed SMT solving. We can compute the optimal values of a variable via encoding

and solving quanti�ed formulas [Kong et al. 2018]. For example, the optimization problem
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Algorithm Time(s) # Unsolved

Qbv 39,038 346

MaxSAT(maxres) 5,882 67

MaxSAT(nadel) 4,704 38

TaichiInt(NoOpt) 10,471 80

TaichiInt 2,212 26

(a) Total solving time and unsolved queries.
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(b) Cactus plot for all solved instances.

Fig. 6. Results of running each solver for the interval abstraction queries.

“max x s .t . φ” can be encoded as

Ψ ≡ φ ∧ (∀x ′.φ[x ′/x]→ x ≥ x ′) ,

which states that for any other variable x ′ such thatφ[x ′/x] is satis�able, we have x ≥ x ′. IfM
is a model of Ψ, thenM (x ) is the maximum value of x . To solve the translated formulas, we use

Z3’s decision procedure for quanti�ed bit-vector constraints (denoted “Qbv”) [Wintersteiger

et al. 2013].

(3) TaichiInt(NoOpt). It uses an SMT-based binary search as TaichiInt, except that it does not

apply the sound interval analysis and �nds solutions for multiple objectives independently,

without reusing models amongst the objectives.

Figure 6a and Figure 6b summarize the results of running the �ve algorithms for interval

abstraction queries, with a timeout of 30 seconds per query. On average, TaichiInt obtains 2.1× to

17.6× speedups over MaxSAT(maxres), MaxSAT(nadel), and Qbv. Besides, TaichiInt can solve 12,

44, and 320 more interval queries than MaxSAT(maxres), MaxSAT(nadel), and Qbv, respectively.

Compared with TaichiInt(NoOpt), TaichiInt solves 114 more queries and is on average 4.7×

faster. The major reason is that optimizing multiple objectives simultaneously (as TaichiInt does)

ensures that all objectives bene�t from the sampled models and potentially avoids repeating

expensive SMT calls. Besides, we also notice that the sound interval analysis in TaichiInt can

often reduce the number of SMT queries by 8% to 21%. We anticipate that the search space could

be better narrowed down by a sound and more precise interval analysis for bit-vectors. However,

exploring this direction is non-trivial, as much of the literature on interval analysis uses unbounded

integers [Gange et al. 2015].

Be�er Precision for Memory Corruption Analysis. We examine the precision of TaichiInt

by integrating it in a tool for detecting memory corruption bugs (§ 6.1). The tool uses a conventional

interval analysis that computes sound but not necessarily best intervals. We then extend the tool

with TaichiInt to measure the number of false positives TaichiInt can reduce. Table 3 summarizes

the analysis results on the CGC dataset. We only report the results for programs that cannot be

proven safe by Angr(ConvInt). When using conventional interval analysis, Angr(ConvInt) is

able to identify 124 vulnerabilities while producing 99 false positives, resulting in a false-positive

rate of 79.8%. Armed with TaichiInt, the false-positive rate of Angr(TaichiInt) is reduced by

22.9%, with 66 false positives removed.
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Table 3. Results of detecting vulnerabilities in the CGC dataset.

Tool # Reports # TP FP Rate

Angr(ConvInt) 124 25 79.8%

Angr(TaichiInt) 58 25 56.9%

(a) TaichiPoly vs. Rsy (b) TaichiPoly vs. Tr (c) TaichiPoly vs.Ter

Fig. 7. Performance comparison for symbolic polyhedral abstraction.

Table 4. Results of running each solver for polyhedral abstraction on 7,634 instances.

Algorithm Time(s) # Unsolved

Rsy 246,418 429

Tr 177,458 116

Ter 167,817 215

TaichiPoly 68,499 65

7.2 Polyhedra Abstraction

Be�er Performance than Existing Approaches to Symbolic Polyhedral Abstraction. Recall
that we cannot reduce symbolic polyhedral abstraction to OMT solving, because the number and

coe�cients of linear inequalities are unknown. Thus, we compare TaichiPoly against the following

algorithms in the literature of symbolic abstraction.

(1) Reps et al. [2004]’s algorithm that starts from lattice ⊥ (denoted “Rsy”).

(2) Thakur and Reps [2012]’s algorithm that starts from lattice > (denoted “Tr”).

(3) Thakur et al. [2012]’s Bilateral algorithm that starts from both lattice ⊥ and lattice > (denoted

“Ter”).

Note that Tr and Ter were previously used for computing the polyhedral abstractions of QF_LRA

formulas. We have adapted the three baselines to handle QF_BV, and implemented them using Z3.

Note that, to improve the empirical e�ectiveness of the client, we enforce the absence of over�ows

in the formulas to be abstracted, by using the encoding schema discussed in § 5.

Table 4 and Figure 7 show the results of running the algorithms with a timeout of 120 seconds

per query. Table 4 compares the total runtime and the number of unsolved queries. Figure 7 is the

scatter plot for the solved queries, where axes correspond to the CPU time (measured in seconds)

taken by TaichiPoly (y-axis) and a baseline technique (x-axis). Each point on the �gure represents

a query. The points below the diagonal represent problems where TaichiPoly is faster.
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Fig. 8. Comparison of sampling speed. The y-aix shows the average time (in millisecond) of sampling one

valid model.

The results show that TaichiPoly outperforms the baselines on our set of benchmarks in most

cases. The average speed up of TaichiPoly vs. Rsy, Tr, and Ter. are 3.6×, 2.6×, 2.4×, respectively.

Besides, TaichiPoly can solve 364, 51, and 150 more queries than Rsy, Tr, and Ter, respectively.

Besides, in our experiments, we also observe that over 83% of the polyhedral abstraction queries

can be solved by TaichiPoly within 15 seconds. Our �ndings show that the overly pessimistic

view of symbolic abstraction could lead researchers to underestimate its potential applications.

Computing the best polyhedral abstractions, the conventionally most expressive domain, can be

e�cient for queries from large and realistic programs.

Be�er Precision for Constrained Random Fuzzing. In this study, we apply TaichiPoly to

the client of constrained-random fuzzing (§ 6.2). Given a path constraint, the goal is to generate a

set of models satisfying the constraint. In this experiment, we compared two algorithms:

(1) Pangolin(Templates) [Huang et al. 2020] computes the symbolic abstraction of the template

polyhedral domain. First, it extracts input variables and their linear expressions in the formula

as the templates, and uses an OMT solver to compute the lower and upper bounds of the

templates (as in § 2.2). Then, it generates candidate models of the formula by sampling

integral points in the polyhedron.

(2) Pangolin(TaichiPoly) uses the same sampling algorithm as Pangolin(Templates), but

computes the polyhedral abstraction via TaichiPoly.

We exclude Rsy, Tr, and Ter in this study, because they compute the same polyhedron as

TaichiPoly, and the di�erence lies in the scalability. Besides, we tried our best to run Elina [Singh

et al. 2017a], the state-of-the-art, conventional polyhedral analysis. However, it is far from trivial to

o�er an apples-to-apples comparison. First, TaichiPoly over-approximates formulas translated from

the assembly, but Elina does not have front ends supporting SMTLIB2 or assembly. Second, Elina

requires a third-party pointer analysis to reason about aliasing, which is a source of imprecision [Wei

et al. 2018]. While in the assembly-level symbolic execution, such information has been precisely

and implicitly encoded in the formulas.

We compare the runtime performance for all the benchmarks whose polyhedral abstraction can

be computed within 15 seconds. For each benchmark, we generate between 5,000 and 50,000 samples
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(depending on the size of the benchmark) and compute the average time taken to generate a valid

(satisfying) and unique sample. Figure 8 shows the average results for queries from each project. We

observe that Pangolin(TaichiPoly) achieves a higher sampling speed than Pangolin(Templates)

on most cases. This is mainly because that, compared with Pangolin(Templates), the polyhedral

abstraction produced by TaichiPoly is often more precise. As a result, the sampling procedure can

be more e�ective, because it operators over a smaller polyhedral region.

7.3 Discussions

Summary of Experiments. The experiments compare our algorithms with existing techniques

in the OMT solving and symbolic abstraction literature, which demonstrate the power of our

approach. We also evaluate two program analysis clients, including (1) the �ow-sensitive, context-

sensitive interprocedural memory corruption analysis, where the abstract transformers of a selected

set of functions are created block-wise via symbolic interval abstraction; and (2) the interproce-

durally path-sensitive constrained random fuzzing, where we compute the symbolic polyhedral

abstractions for the path conditions of selected path pre�xes. Speci�cally, the sizes of the real-world

projects for constrained random fuzzing range from 5.4K to 764.7K lines of code. The results

highlight the e�ectiveness of our algorithms for realistic and large-scale programs.

Convergence in Lazy All-SMT. Many algorithms in automated reasoning work in the style of

the lazy All-SMT loop [John and Chakraborty 2011; Lahiri et al. 2006; Monniaux 2010; Sullivan

et al. 2019]. These algorithms iteratively enumerate the models of a formula φ, which are used to

“generalize” some abstraction; the iteration terminates until the abstraction has encompassed the

formula’s solution space. Three factors a�ect the scalability: the model returned by the decision

procedure, the method for the generalization, and the performance of the decision procedure. Many

of the past e�orts target the latter two factors. For example, Thakur and Reps [2012] optimize the

generalization in symbolic abstraction by computing the “abstract consequences” of an atomic

formula. Lahiri et al. [2006]’s predicate abstraction algorithm speeds up SMT solving by guiding

the con�ict-driven back-jumping inside SMT solvers.

The tenet of our work is to better reuse models and �nd “better” models for speeding up the

convergence. An interesting merit is the use of interval abstraction for accelerating polyhedral

abstraction, which opens up a new connection between OMT solving and symbolic abstraction.

Note that Algorithm 6 and Algorithm 7 do not attempt to re�ne the intervals (in the sense of

abstraction re�nement). Instead, they leverage the speci�c models under which the variables have

the extremal values.

Sampling and Optimization. Our work opens up a dual-use of solution sampling and con-

strained optimization. On the one hand, our algorithm attempts to sample “better” models of a

formula for accelerating symbolic abstraction (a form of optimization). On the other hand, we

demonstrate that a formula’s symbolic abstractions can be used to sample its solutions. We do not

claim that Pangolin(TaichiPoly) is superior than existing general-purpose uniform samplers such

as Unigen3 [Meel and Akshay 2020]. The bene�ts of Pangolin(TaichiPoly) are correlated with the

size of the formula, the number of the formula’s variables, the model count of the formula, to name

a few. For example, MCMC methods can su�er from the curse of dimensionality [Chernozhukov

and Hong 2003; Ermon et al. 2013], which means the possibility of sampling inside a certain space

in the target object decreases very quickly while the dimension increases. However, we believe that

our work represents an interesting point in the connections between sampling and optimization.

Applicability of Symbolic Abstraction. Symbolic abstraction is an instance of a fundamental

approximation problem: given a formula φ in a logic L and a less expressive logic L ′, �nd the
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strongest consequence of φ that is expressible in L ′ [Reps and Thakur 2016]. For instance, for

the interval domain, the logic L ′ can be regarded as a logic fragment of conjunctions of single-

variable inequalities. In the context of abstract interpretation, beyond computing the best abstract

transformer, the symbolic abstraction also gives a way to automate other operations, such as (1)

performing semantic reduction [Cousot and Cousot 1979b; Kincaid et al. 2017], (2) performing

reduced-product calculations [Thakur et al. 2015], and (3) converting an abstract value from one

abstract domain to another (e.g., when crossing analysis boundaries), etc. For example, letψ be a

constraint representation of the polyhedral domain. We can convertψ to an element in the octagon

domain, by convertingψ to a �rst-order formula and performing symbolic abstraction toψ .

8 RELATEDWORK

We discuss closely-related work in two groups: symbolic abstraction and automated reasoning.

8.1 Symbolic Abstraction

Reps et al. [2004] introduce the problem of symbolic abstraction, which computes the best abstrac-

tion of a formula in a given abstract domain. The problem has been undertaken for �nite-height

domains [Reps et al. 2004], template linear domains [Brauer and King 2010; Monniaux 2009], the

wedge domains [Kincaid et al. 2017], as well as the polyhedral domains [Thakur and Reps 2012].

Symbolic abstraction has found many applications, such as shape analysis [Reps et al. 2004; Yorsh

et al. 2004], program veri�cation [Jiang et al. 2017; Li et al. 2014], control �ow recovery [Barrett

and King 2010], and compiler optimization [Ritter 2015]. In what follows, we focus on algorithms

for symbolic abstraction.

Algorithmic Framework. The Rsy algorithm [Reps et al. 2004] is a parametric framework that

applies to di�erent domains. To abstract a formula φ, it iteratively calls a decision procedure to

sample a model of φ, and generalizes the current abstraction using the model, until the abstraction

encompasses all models of φ. A limitation of Rsy is that it is not resilient to timeouts. If running out

of the time budget, it must return > to be sound as it starts from lattice ⊥. In comparison, Thakur

and Reps [2012]’s algorithm starts from lattice >. Thakur et al. [2012]’s Bilateral algorithm starts

from both lattice ⊥ and lattice > (denoted “Ter”). Both Tr and Ter could return a nontrivial (non

>) value in case of a timeout [Thakur et al. 2012; Thakur and Reps 2012]. TaichiPoly builds on the

Rsy framework, and centers around a critical but long-neglected design bottleneck in symbolic

abstraction, the way for sampling the models. Speci�cally, our approach attempts to �nd “better”

models to speed up the convergence.

Interval Domain. Regehr and Reid [2004] present a method that constructs the best abstract

transformers for machine instructions, for the interval and bitwise abstract domains. Their method

does not call a SAT or SMT solver but, instead, uses the physical processor as a black box. To

compute the abstract post-state for an abstract value a, the approach recursively divides a until an

abstract value, whose concretization is a singleton set, is obtained. Barrett and King [2010] develop

a method of generating interval and set abstractions for bit-vectors that are bit-blasted to Boolean

formulas. For interval analysis, they separately compute the minimum and maximum value of the

range for an n-bit bit-vector using 2n calls to an SAT solver, with each SAT query determining a

single bit of the output. Barrett and King [2010]’s algorithms only consider the abstraction of one

variable, whereas our interval abstraction algorithm targets multiple variables.

Polyhedral Domain. While several e�orts have been made for the symbolic abstractions of

template linear domains, little work has been done for polyhedral domains. Thakur et al. [2012]’s
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algorithm and Thakur and Reps [2012]’s algorithm have only been applied to the symbolic poly-

hedral abstraction of QF_LRA formulas. Our work provides the �rst empirical comparison of the

algorithms for QF_BV. When formulating this work, we noticed that Algorithm 6 is similar to an

unpublished algorithm by Jörg Brauer.
10
Our polyhedral analysis di�ers in two aspects. First, our

solution Algorithm 7 interleaves the RSY algorithm and Algorithm 6, aiming to balance the cost

and quality of the sampled models. Second, our algorithms simultaneously compute the symbolic

interval abstractions of di�erent variables, while Brauer’s algorithm computes such information

variable by variable.

In the realm of conventional polyhedral analysis, Elina’s online decompositions improve the

performance of the polyhedral domain by a large margin [Singh et al. 2017a,c]. It is further optimized

with learning-based heuristics [He et al. 2020; Singh et al. 2018] that trade precision for scalability.

Elina has mainly been used for whole-program analysis, while we apply TaichiPoly to compute

the polyhedral abstraction for speci�c path constraints. We found that TaichiPoly can be extremely

expensive when used for an exhaustive analysis of large-scale programs.

Apart from the abstract interpretation community, there are alternatives for deriving sound poly-

hedral approximations of a formula. For example, Gröbner basis algorithms allow for deducing linear

inequalities from a non-linear formula over �elds, such as rationals and complex numbers [Becker

et al. 1993]. Recently, a variant of Buchberger’s algorithm has been reported that is applicable to

modulo integers with respect to arbitrary moduli [Brickenstein et al. 2009]. Besides, one could apply

machine learning techniques such as SVM to learn linear over-approximations of a (non-linear)

formula, by utilizing both satisfying and falsifying assignments of the formula [Dathathri et al. 2017].

However, both the Gröbner basis-based approach [Brickenstein et al. 2009] and the learning-based

approach [Dathathri et al. 2017] have no guarantees on the precision of the derived abstractions.

8.2 Automated Reasoning

Symbolic abstraction is also closely related to several problems in automated reasoning, including

optimization modulo theories, quanti�ed constraint satisfaction, and quanti�er elimination.

Optimization Modulo Theories. OMT is an extension of SMT that allows for �nding models

optimizing given objectives [Fazekas et al. 2018; Li et al. 2014; Nieuwenhuis and Oliveras 2006;

Sebastiani and Tomasi 2015b; Sebastiani and Trentin 2015a,b]. Previous work [Jiang et al. 2017; Li

et al. 2014] shows that symbolic abstraction of template linear domains such as interval [Cousot and

Cousot 1977] and octagon [Miné 2006] can be reduced to solving boxed OMT problems. A closely

related work is Symba [Li et al. 2014], which also simultaneously optimizes multiple objectives and

reuses information between them to speed up the analysis. There are three main di�erences. First,

Symba targets unbounded and linear arithmetic, while we focus on bit-vectors. Second, Symba

is a linear-search-style algorithm, while our procedure for interval abstraction is binary-search-

style. Third, Symba is only applicable to the template linear domains, while we further target the

polyhedral domain.

Most state-of-the-art OMT solvers such as νZ [Bjørner et al. 2015] and OpTiMathSAT [Se-

bastiani and Tomasi 2015b] reduce the problem of bit-vector optimization to weighted MaxSAT

solving [Bjørner et al. 2015; Sebastiani and Tomasi 2015b]. Nadel and Ryvchin [2016]’s approach �rst

transforms a bit-vector formula to an SAT formula and then performs a binary search exploration

over the bits of the objective function, using a sequence of incremental calls to the underlying

SAT solver. Their approach is essentially a variant of Algorithm 1 but does not consider boxed

multi-objectives optimization problems.

10
Personal communication.
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Quanti�ed Constraint Satisfaction. Many OMT problems can be addressed by solving quan-

ti�ed constraint satisfaction problems. For instance, previous work has shown that a decision

procedure for solving quanti�ed formulas can e�ectively solve the OMT problem speci�c for

non-linear real arithmetic [Kong et al. 2018]. This paper o�ers the �rst empirical evidence on the

performance of quanti�ed bit-vector solving for symbolic interval abstraction. To solve quanti�ed

bit-vector formulas, Z3 combines model-based quanti�er instantiation [De Moura and Bjørner

2008] and a model �nding procedure based on templates [Wintersteiger et al. 2013]. Q3B [Jonás

and Strejcek 2016] translates the formulas to the Binary Decision Diagram, and handles non-linear

operations by approximations. Recently, the Boolector and CVC4 developers introduced the CEGIS

(counter-example guided inductive synthesis) methodology to solve quanti�ed formulas [Niemetz

et al. 2018, 2021; Preiner et al. 2017]. Despite the progress, we �nd that state-of-the-art SMT solvers

still often run into di�culties when solving quanti�ed formulas translated from large OMT instances

in the bit-vector theory.

Quanti�er Elimination. Symbolic abstraction also has a connection to the problem quanti�er

elimination [Arnon 1988; Loos and Weispfenning 1993] or “forgetting” [Lin 2001; Lin and Reiter

1994], which can compute the strongest consequence of a formula that mentions only a subset of its

variables. Gulwani and Musuvathi [2008] de�ne the “cover problem” that essentially approximates

existential quanti�er elimination for the combined theory of uninterpreted functions and linear

arithmetic. Monniaux [2009] introduced a quanti�er-elimination-based approach to computing

optimal abstract transformers of template linear domains, such as intervals, octagon, and template

polyhedron. Monniaux [2009]’s algorithm targets linear real arithmetic. To date, there has been

relatively little progress on quanti�er elimination for the bit-vector theory [Backeman et al. 2018].

Translation from bit-vectors to unbounded arithmetic can result in complicated constraints that are

hard to reason about, and bit-blasting to propositional logic leads to an exponential increase in the

formula size. The algorithms by John and Chakraborty [2011, 2013] only support the linear modulo

arithmetic. Interpolation and model-based projection [Komuravelli et al. 2016] can compute over-

and under-approximations of quanti�er elimination respectively, which do not guarantee precision

or soundness.

9 CONCLUSION

The development of abstract domains has never been easy, which requires signi�cant expertise,

careful tuning of the abstract transformers, as well as code optimizations. Symbolic abstraction has

the signi�cant potential to change this landscape. It allows for the automatic synthesis of abstract

transformers for a block of code, which could be more precise than the usual composition of the

individual operations’ abstractions and less tedious to design and implement transfer functions.

This paper provides strong evidence that symbolic abstraction of numeric domains can be made

e�cient and practical for large and realistic programs. In a virtuous cycle, the development and

widespread use of symbolic abstraction algorithms would likely uncover additional client analyses

that bene�t from the added precision.

ACKNOWLEDGMENTS

We thank the anonymous reviewers and our shepherd for valuable feedback on earlier drafts of this

paper, which helped improve its presentation. We also appreciate Dr. Jörg Brauer and Dr. Mianlai

Zhou for insightful discussions. The authors are supported by the RGC16206517 and ITS/440/18FP

grants from the Hong Kong Research Grant Council, Ant Research Program, and the donations

from Microsoft and Huawei. Qingkai Shi is the corresponding author.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 118. Publication date: October 2021.



Program Analysis via E�icient Symbolic Abstraction 118:29

REFERENCES

2014. AFL: american fuzzy lop. http://lcamtuf.coredump.cx/a�/. (2014). Accessed: 2014.

Bijan Alizadeh and Masahiro Fujita. 2009. Modular arithmetic decision procedure with auto-correction mechanism. In IEEE
International High Level Design Validation and Test Workshop, HLDVT 2009, San Francisco, CA, USA, 4-6 November 2009.
IEEE Computer Society, 138–145. https://doi.org/10.1109/HLDVT.2009.5340162

Dennis S. Arnon. 1988. A Bibliography of Quanti�er Elimination for Real Closed Fields. J. Symb. Comput. 5, 1/2 (1988),
267–274. https://doi.org/10.1016/S0747-7171(88)80016-6

Benjamin Assarf, Ewgenij Gawrilow, Katrin Herr, Michael Joswig, Benjamin Lorenz, Andreas Pa�enholz, and Thomas Rehn.

2017. Computing convex hulls and counting integer points with polymake. Math. Program. Comput. 9, 1 (2017), 1–38.
https://doi.org/10.1007/s12532-016-0104-z

Peter Backeman, Philipp Rümmer, and Aleksandar Zeljic. 2018. Bit-Vector Interpolation and Quanti�er Elimination by Lazy

Reduction. In 2018 Formal Methods in Computer Aided Design, FMCAD 2018, Austin, TX, USA, October 30 - November 2,
2018, Nikolaj Bjørner and Arie Gur�nkel (Eds.). IEEE, 1–10. https://doi.org/10.23919/FMCAD.2018.8603023

Ti�any Bao, Ruoyu Wang, Yan Shoshitaishvili, and David Brumley. 2017. Your Exploit is Mine: Automatic Shellcode

Transplant for Remote Exploits. In 2017 IEEE Symposium on Security and Privacy, SP 2017, San Jose, CA, USA, May 22-26,
2017. IEEE Computer Society, 824–839. https://doi.org/10.1109/SP.2017.67

Clark W. Barrett and Cesare Tinelli. 2018. Satis�ability Modulo Theories. In Handbook of Model Checking, Edmund M.

Clarke, Thomas A. Henzinger, Helmut Veith, and Roderick Bloem (Eds.). Springer, 305–343. https://doi.org/10.1007/978-

3-319-10575-8_11

Edd Barrett and Andy King. 2010. Range and Set Abstraction using SAT. Electron. Notes Theor. Comput. Sci. 267, 1 (2010),
17–27. https://doi.org/10.1016/j.entcs.2010.09.003

Thomas Becker, Volker Weispfenning, and Heinz Kredel. 1993. Gröbner bases - a computational approach to commutative
algebra. Graduate texts in mathematics, Vol. 141. Springer.

Dirk Beyer, Alessandro Cimatti, Alberto Griggio, M. Erkan Keremoglu, and Roberto Sebastiani. 2009. Software model

checking via large-block encoding. In Proceedings of 9th International Conference on Formal Methods in Computer-Aided
Design, FMCAD 2009, 15-18 November 2009, Austin, Texas, USA. IEEE, 25–32. https://doi.org/10.1109/FMCAD.2009.5351147

Fabrizio Biondi, Michael A. Enescu, Annelie Heuser, Axel Legay, Kuldeep S. Meel, and Jean Quilbeuf. 2018. Scalable

Approximation of Quantitative Information Flow in Programs. In Veri�cation, Model Checking, and Abstract Interpretation
- 19th International Conference, VMCAI 2018, Los Angeles, CA, USA, January 7-9, 2018, Proceedings (Lecture Notes in Computer
Science), Isil Dillig and Jens Palsberg (Eds.), Vol. 10747. Springer, 71–93. https://doi.org/10.1007/978-3-319-73721-8_4

Nikolaj Bjørner, Anh-Dung Phan, and Lars Fleckenstein. 2015. νZ-an optimizing SMT solver. In Proceedings of the 21st
International Conference on Tools and Algorithms for the Construction and Analysis of Systems - Volume 9035. Springer-
Verlag, Berlin, Heidelberg, 194–199. https://doi.org/10.1007/978-3-662-46681-0_14

Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérome Feret, Laurent Mauborgne, Antoine Miné, David Monniaux, and

Xavier Rival. 2003. A Static Analyzer for Large Safety-critical Software. In Proceedings of the ACM SIGPLAN 2003
Conference on Programming Language Design and Implementation (PLDI ’03). ACM, New York, NY, USA, 196–207.

https://doi.org/10.1145/781131.781153

Jörg Brauer and Andy King. 2010. Automatic Abstraction for Intervals Using Boolean Formulae.. In Proceedings of the 17th
International Conference on Static Analysis (SAS’10). Springer-Verlag, Berlin, Heidelberg, 167–183. http://dl.acm.org/

citation.cfm?id=1882094.1882105

Michael Brickenstein, Alexander Dreyer, Gert-Martin Greuel, Markus Wedler, and Oliver Wienand. 2009. New developments

in the theory of Gröbner bases and applications to formal veri�cation. Journal of Pure and Applied Algebra 213, 8 (2009),
1612–1635.

Stefan Bygde, Björn Lisper, and Niklas Holsti. 2012. Fully Bounded Polyhedral Analysis of Integers with Wrapping. Electron.
Notes Theor. Comput. Sci. 288 (2012), 3–13. https://doi.org/10.1016/j.entcs.2012.10.003

P. Chen and H. Chen. 2018. Angora: E�cient Fuzzing by Principled Search. In 2018 IEEE Symposium on Security and Privacy
(SP), Vol. 00. 711–725. https://doi.org/10.1109/SP.2018.00046

Yuansi Chen, Raaz Dwivedi, Martin J. Wainwright, and Bin Yu. 2018. Fast MCMC Sampling Algorithms on Polytopes. J.
Mach. Learn. Res. 19 (2018), 55:1–55:86. http://jmlr.org/papers/v19/18-158.html

Victor Chernozhukov and Han Hong. 2003. An MCMC approach to classical estimation. Journal of Econometrics 115, 2
(2003), 293–346.

Patrick Cousot and Radhia Cousot. 1977. Static Determination of Dynamic Properties of Generalized Type Unions. In

Proceedings of an ACM Conference on Language Design for Reliable Software. Association for Computing Machinery, New

York, NY, USA, 77–94. https://doi.org/10.1145/800022.808314

Patrick Cousot and Radhia Cousot. 1979a. Systematic Design of Program Analysis Frameworks. In Proceedings of the 6th
ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages (POPL ’79). Association for Computing

Machinery, New York, NY, USA, 269–282. https://doi.org/10.1145/567752.567778

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 118. Publication date: October 2021.

http://lcamtuf.coredump.cx/afl/
https://doi.org/10.1109/HLDVT.2009.5340162
https://doi.org/10.1016/S0747-7171(88)80016-6
https://doi.org/10.1007/s12532-016-0104-z
https://doi.org/10.23919/FMCAD.2018.8603023
https://doi.org/10.1109/SP.2017.67
https://doi.org/10.1007/978-3-319-10575-8_11
https://doi.org/10.1007/978-3-319-10575-8_11
https://doi.org/10.1016/j.entcs.2010.09.003
https://doi.org/10.1109/FMCAD.2009.5351147
https://doi.org/10.1007/978-3-319-73721-8_4
https://doi.org/10.1007/978-3-662-46681-0_14
https://doi.org/10.1145/781131.781153
http://dl.acm.org/citation.cfm?id=1882094.1882105
http://dl.acm.org/citation.cfm?id=1882094.1882105
https://doi.org/10.1016/j.entcs.2012.10.003
https://doi.org/10.1109/SP.2018.00046
http://jmlr.org/papers/v19/18-158.html
https://doi.org/10.1145/800022.808314
https://doi.org/10.1145/567752.567778


118:30 Peisen Yao, Qingkai Shi, Heqing Huang, and Charles Zhang

Patrick Cousot and Radhia Cousot. 1979b. Systematic Design of Program Analysis Frameworks. In Conference Record of the
Sixth Annual ACM Symposium on Principles of Programming Languages, San Antonio, Texas, USA, January 1979, Alfred V.

Aho, Stephen N. Zilles, and Barry K. Rosen (Eds.). ACM Press, 269–282. https://doi.org/10.1145/567752.567778

Patrick Cousot and Nicolas Halbwachs. 1978. Automatic Discovery of Linear Restraints Among Variables of a Program.

In Conference Record of the Fifth Annual ACM Symposium on Principles of Programming Languages, Tucson, Arizona,
USA, January 1978, Alfred V. Aho, Stephen N. Zilles, and Thomas G. Szymanski (Eds.). ACM Press, 84–96. https:

//doi.org/10.1145/512760.512770

Sandeep Dasgupta, Daejun Park, Theodoros Kasampalis, Vikram S. Adve, and Grigore Rosu. 2019. A complete formal

semantics of x86-64 user-level instruction set architecture. In Proceedings of the 40th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI 2019, Phoenix, AZ, USA, June 22-26, 2019, Kathryn S. McKinley

and Kathleen Fisher (Eds.). ACM, 1133–1148. https://doi.org/10.1145/3314221.3314601

Sumanth Dathathri, Nikos Aréchiga, Sicun Gao, and Richard M. Murray. 2017. Learning-Based Abstractions for Nonlinear

Constraint Solving. In Proceedings of the Twenty-Sixth International Joint Conference on Arti�cial Intelligence, IJCAI 2017,
Melbourne, Australia, August 19-25, 2017, Carles Sierra (Ed.). ijcai.org, 592–599. https://doi.org/10.24963/ijcai.2017/83

LeonardoDeMoura andNikolaj Bjørner. 2008. Z3: An e�cient SMT solver. In Proceedings of the Theory and Practice of Software,
14th International Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS’08/ETAPS’08).
Springer-Verlag, Berlin, Heidelberg, 337–340. http://dl.acm.org/citation.cfm?id=1792734.1792766

B. Dolan-Gavitt, P. Hulin, E. Kirda, T. Leek, A. Mambretti, W. Robertson, F. Ulrich, and R. Whelan. 2016. LAVA: Large-Scale

Automated Vulnerability Addition. In 2016 IEEE Symposium on Security and Privacy (SP). 110–121. https://doi.org/10.
1109/SP.2016.15

Rafael Dutra, Kevin Laeufer, Jonathan Bachrach, and Koushik Sen. 2018. E�cient Sampling of SAT Solutions for Testing. In

Proceedings of the 40th International Conference on Software Engineering (ICSE ’18). Association for Computing Machinery,

New York, NY, USA, 549–559. https://doi.org/10.1145/3180155.3180248

Martin E. Dyer and Alan M. Frieze. 1988. On the Complexity of Computing the Volume of a Polyhedron. SIAM J. Comput.
17, 5 (1988), 967–974. https://doi.org/10.1137/0217060

Stefano Ermon, Carla P. Gomes, Ashish Sabharwal, and Bart Selman. 2013. Taming the Curse of Dimensionality: Discrete

Integration by Hashing and Optimization. In Proceedings of the 30th International Conference on Machine Learning,
ICML 2013, Atlanta, GA, USA, 16-21 June 2013 (JMLR Workshop and Conference Proceedings), Vol. 28. JMLR.org, 334–342.

http://proceedings.mlr.press/v28/ermon13.html

Katalin Fazekas, Fahiem Bacchus, and Armin Biere. 2018. Implicit Hitting Set Algorithms for Maximum Satis�ability Modulo

Theories. In Automated Reasoning - 9th International Joint Conference, IJCAR 2018, Held as Part of the Federated Logic
Conference, FloC 2018, Oxford, UK, July 14-17, 2018, Proceedings (Lecture Notes in Computer Science), Didier Galmiche,

Stephan Schulz, and Roberto Sebastiani (Eds.), Vol. 10900. Springer, 134–151. https://doi.org/10.1007/978-3-319-94205-6_10

Vijay Ganesh and David L Dill. 2007. A decision procedure for bit-vectors and arrays. In Proceedings of the 19th International
Conference on Computer Aided Veri�cation (CAV’07). Springer-Verlag, Berlin, Heidelberg, 519–531. http://dl.acm.org/

citation.cfm?id=1770351.1770421

Graeme Gange, Jorge A. Navas, Peter Schachte, Harald Søndergaard, and Peter J. Stuckey. 2015. Interval Analysis and

Machine Arithmetic: Why Signedness Ignorance Is Bliss. ACM Trans. Program. Lang. Syst. 37, 1, Article 1 (Jan. 2015),
35 pages. https://doi.org/10.1145/2651360

Denis Gopan and Thomas Reps. 2007. Low-level Library Analysis and Summarization. In Proceedings of the 19th International
Conference on Computer Aided Veri�cation (CAV’07). Springer-Verlag, Berlin, Heidelberg, 68–81. http://dl.acm.org/citation.

cfm?id=1770351.1770365

Sumit Gulwani and Madan Musuvathi. 2008. Cover Algorithms and Their Combination. In Programming Languages and
Systems, 17th European Symposium on Programming, ESOP 2008, Held as Part of the Joint European Conferences on Theory
and Practice of Software, ETAPS 2008, Budapest, Hungary, March 29-April 6, 2008. Proceedings (Lecture Notes in Computer
Science), Sophia Drossopoulou (Ed.), Vol. 4960. Springer, 193–207. https://doi.org/10.1007/978-3-540-78739-6_16

Jingxuan He, Gagandeep Singh, Markus Püschel, and Martin T. Vechev. 2020. Learning fast and precise numerical analysis.

In Proceedings of the 41st ACM SIGPLAN International Conference on Programming Language Design and Implementation,
PLDI 2020, London, UK, June 15-20, 2020, Alastair F. Donaldson and Emina Torlak (Eds.). ACM, 1112–1127. https:

//doi.org/10.1145/3385412.3386016

Julien Henry, Mihail Asavoae, David Monniaux, and Claire Maiza. 2014. How to compute worst-case execution time by

optimization modulo theory and a clever encoding of program semantics. In SIGPLAN/SIGBED Conference on Languages,
Compilers and Tools for Embedded Systems 2014, LCTES ’14, Edinburgh, United Kingdom - June 12 - 13, 2014, Youtao Zhang

and Prasad Kulkarni (Eds.). ACM, 43–52. https://doi.org/10.1145/2597809.2597817

Heqing Huang, Peisen Yao, Rongxin Wu, Qingkai Shi, and Charles Zhang. 2020. Pangolin: Incremental Hybrid Fuzzing

with Polyhedral Path Abstraction. In 2020 IEEE Symposium on Security and Privacy, SP 2020, San Francisco, CA, USA, May
18-21, 2020. IEEE, 1613–1627. https://doi.org/10.1109/SP40000.2020.00063

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 118. Publication date: October 2021.

https://doi.org/10.1145/567752.567778
https://doi.org/10.1145/512760.512770
https://doi.org/10.1145/512760.512770
https://doi.org/10.1145/3314221.3314601
https://doi.org/10.24963/ijcai.2017/83
http://dl.acm.org/citation.cfm?id=1792734.1792766
https://doi.org/10.1109/SP.2016.15
https://doi.org/10.1109/SP.2016.15
https://doi.org/10.1145/3180155.3180248
https://doi.org/10.1137/0217060
http://proceedings.mlr.press/v28/ermon13.html
https://doi.org/10.1007/978-3-319-94205-6_10
http://dl.acm.org/citation.cfm?id=1770351.1770421
http://dl.acm.org/citation.cfm?id=1770351.1770421
https://doi.org/10.1145/2651360
http://dl.acm.org/citation.cfm?id=1770351.1770365
http://dl.acm.org/citation.cfm?id=1770351.1770365
https://doi.org/10.1007/978-3-540-78739-6_16
https://doi.org/10.1145/3385412.3386016
https://doi.org/10.1145/3385412.3386016
https://doi.org/10.1145/2597809.2597817
https://doi.org/10.1109/SP40000.2020.00063


Program Analysis via E�icient Symbolic Abstraction 118:31

Jiahong Jiang, Liqian Chen, Xueguang Wu, and Ji Wang. 2017. Block-Wise Abstract Interpretation by Combining Abstract

Domains with SMT. In Veri�cation, Model Checking, and Abstract Interpretation - 18th International Conference, VMCAI
2017, Paris, France, January 15-17, 2017, Proceedings (Lecture Notes in Computer Science), Ahmed Bouajjani and David

Monniaux (Eds.), Vol. 10145. Springer, 310–329. https://doi.org/10.1007/978-3-319-52234-0_17

Ajith K John and Supratik Chakraborty. 2011. A quanti�er elimination algorithm for linear modular equations and

disequations. In Proceedings of the 23rd International Conference on Computer Aided Veri�cation (CAV’11). Springer-Verlag,
Berlin, Heidelberg, 486–503. http://dl.acm.org/citation.cfm?id=2032305.2032344

Ajith K John and Supratik Chakraborty. 2013. Extending quanti�er elimination to linear inequalities on bit-vectors. In

Proceedings of the 19th International Conference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS’13). Springer-Verlag, Berlin, Heidelberg, 78–92. https://doi.org/10.1007/978-3-642-36742-7_6

Martin Jonás and Jan Strejcek. 2016. Solving Quanti�ed Bit-Vector Formulas Using Binary Decision Diagrams. In Theory
and Applications of Satis�ability Testing - SAT 2016 - 19th International Conference, Bordeaux, France, July 5-8, 2016,
Proceedings (Lecture Notes in Computer Science), Nadia Creignou and Daniel Le Berre (Eds.), Vol. 9710. Springer, 267–283.

https://doi.org/10.1007/978-3-319-40970-2_17

Ravi Kannan and Hariharan Narayanan. 2009. Random Walks on Polytopes and an A�ne Interior Point Method for Linear

Programming. In Proceedings of the Forty-�rst Annual ACM Symposium on Theory of Computing (STOC ’09). ACM, New

York, NY, USA, 561–570. https://doi.org/10.1145/1536414.1536491

Ravindran Kannan and Hariharan Narayanan. 2012. Random Walks on Polytopes and an A�ne Interior Point Method for

Linear Programming. Math. Oper. Res. 37, 1 (2012), 1–20. https://doi.org/10.1287/moor.1110.0519

Zachary Kincaid, John Cyphert, Jason Breck, and Thomas Reps. 2017. Non-Linear Reasoning for Invariant Synthesis. Proc.
ACM Program. Lang. 2, POPL, Article 54 (Dec. 2017), 33 pages. https://doi.org/10.1145/3158142

Nathan Kitchen and Andreas Kuehlmann. 2007. Stimulus generation for constrained random simulation. In 2007 International
Conference on Computer-Aided Design, ICCAD 2007, San Jose, CA, USA, November 5-8, 2007, Georges G. E. Gielen (Ed.).

IEEE Computer Society, 258–265. https://doi.org/10.1109/ICCAD.2007.4397275

Ali Sinan Köksal, Viktor Kuncak, and Philippe Suter. 2012. Constraints as Control. In Proceedings of the 39th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’12). Association for Computing Machinery,

New York, NY, USA, 151–164. https://doi.org/10.1145/2103656.2103675

Anvesh Komuravelli, Arie Gur�nkel, and Sagar Chaki. 2016. SMT-based model checking for recursive programs. Formal
Methods Syst. Des. 48, 3 (2016), 175–205. https://doi.org/10.1007/s10703-016-0249-4

Soonho Kong, Armando Solar-Lezama, and Sicun Gao. 2018. Delta-Decision Procedures for Exists-Forall Problems over the

Reals. 10982 (2018), 219–235. https://doi.org/10.1007/978-3-319-96142-2_15

Shuvendu K Lahiri, Robert Nieuwenhuis, and Albert Oliveras. 2006. SMT techniques for fast predicate abstraction. In Pro-
ceedings of the 18th International Conference on Computer Aided Veri�cation (CAV’06). Springer-Verlag, Berlin, Heidelberg,
424–437. https://doi.org/10.1007/11817963_39

Yi Li, Aws Albarghouthi, Zachary Kincaid, Arie Gur�nkel, and Marsha Chechik. 2014. Symbolic optimization with SMT

solvers. In Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’14).
ACM, New York, NY, USA, 607–618. https://doi.org/10.1145/2535838.2535857

Junghee Lim and Thomas Reps. 2013. TSL: A System for Generating Abstract Interpreters and Its Application to Machine-

Code Analysis. ACM Trans. Program. Lang. Syst. 35, 1, Article 4 (April 2013), 59 pages. https://doi.org/10.1145/2450136.
2450139

Fangzhen Lin. 2001. On strongest necessary and weakest su�cient conditions. Artif. Intell. 128, 1-2 (2001), 143–159.

https://doi.org/10.1016/S0004-3702(01)00070-4

Fangzhen Lin and Ray Reiter. 1994. Forget it. In Working Notes of AAAI Fall Symposium on Relevance. 154–159.
Björn Lisper. 2003. Fully Automatic, Parametric Worst-Case Execution Time Analysis. In Proceedings of the 3rd International

Workshop on Worst-Case Execution Time Analysis, WCET 2003 - a Satellite Event to ECRTS 2003, Polytechnic Institute of
Porto, Portugal, July 1, 2003, Jan Gustafsson (Ed.), Vol. MDH-MRTC-116/2003-1-SE. Department of Computer Science and

Engineering, Mälardalen University, Box 883, 721 23 Västerås, Sweden, 99–102.

Francesco Logozzo and Manuel Fähndrich. 2008. On the Relative Completeness of Bytecode Analysis Versus Source Code

Analysis. In Compiler Construction, 17th International Conference, CC 2008, Held as Part of the Joint European Conferences
on Theory and Practice of Software, ETAPS 2008, Budapest, Hungary, March 29 - April 6, 2008. Proceedings (Lecture Notes in
Computer Science), Laurie J. Hendren (Ed.), Vol. 4959. Springer, 197–212. https://doi.org/10.1007/978-3-540-78791-4_14

Rüdiger Loos and Volker Weispfenning. 1993. Applying Linear Quanti�er Elimination. Comput. J. 36, 5 (1993), 450–462.
https://doi.org/10.1093/comjnl/36.5.450

Kuldeep S. Meel and S. Akshay. 2020. Sparse Hashing for Scalable Approximate Model Counting: Theory and Practice. In

Proceedings of the 35th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS ’20). Association for Computing

Machinery, New York, NY, USA, 728–741. https://doi.org/10.1145/3373718.3394809

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 118. Publication date: October 2021.

https://doi.org/10.1007/978-3-319-52234-0_17
http://dl.acm.org/citation.cfm?id=2032305.2032344
https://doi.org/10.1007/978-3-642-36742-7_6
https://doi.org/10.1007/978-3-319-40970-2_17
https://doi.org/10.1145/1536414.1536491
https://doi.org/10.1287/moor.1110.0519
https://doi.org/10.1145/3158142
https://doi.org/10.1109/ICCAD.2007.4397275
https://doi.org/10.1145/2103656.2103675
https://doi.org/10.1007/s10703-016-0249-4
https://doi.org/10.1007/978-3-319-96142-2_15
https://doi.org/10.1007/11817963_39
https://doi.org/10.1145/2535838.2535857
https://doi.org/10.1145/2450136.2450139
https://doi.org/10.1145/2450136.2450139
https://doi.org/10.1016/S0004-3702(01)00070-4
https://doi.org/10.1007/978-3-540-78791-4_14
https://doi.org/10.1093/comjnl/36.5.450
https://doi.org/10.1145/3373718.3394809


118:32 Peisen Yao, Qingkai Shi, Heqing Huang, and Charles Zhang

Antoine Miné. 2001. A New Numerical Abstract Domain Based on Di�erence-Bound Matrices. In Proceedings of the Second
Symposium on Programs As Data Objects (PADO ’01). Springer-Verlag, London, UK, UK, 155–172. http://dl.acm.org/

citation.cfm?id=645774.668110

Antoine Miné. 2006. The octagon abstract domain. High. Order Symb. Comput. 19, 1 (2006), 31–100. https://doi.org/10.1007/
s10990-006-8609-1

David Monniaux. 2009. Automatic Modular Abstractions for Linear Constraints. In Proceedings of the 36th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’09). ACM, New York, NY, USA, 140–151.

https://doi.org/10.1145/1480881.1480899

DavidMonniaux. 2010. Quanti�er Elimination by LazyModel Enumeration. In Proceedings of the 22nd International Conference
on Computer Aided Veri�cation (CAV’10). Springer-Verlag, Berlin, Heidelberg, 585–599. https://doi.org/10.1007/978-3-
642-14295-6_51

Alexander Nadel and Vadim Ryvchin. 2016. Bit-vector optimization. In Proceedings of the 22Nd International Conference on
Tools and Algorithms for the Construction and Analysis of Systems - Volume 9636 (TACAS’16). Springer-Verlag New York,

Inc., New York, NY, USA, 851–867. https://doi.org/10.1007/978-3-662-49674-9_53

Nina Narodytska and Fahiem Bacchus. 2014. Maximum satis�ability using core-guided MaxSAT resolution. In Proceedings
of the Twenty-Eighth AAAI Conference on Arti�cial Intelligence (AAAI’14). AAAI Press, 2717–2723. http://dl.acm.org/

citation.cfm?id=2892753.2892928

Reuven Naveh and Amit Metodi. 2013. Beyond Feasibility: CP Usage in Constrained-Random Functional Hardware

Veri�cation. In Principles and Practice of Constraint Programming - 19th International Conference, CP 2013, Uppsala, Sweden,
September 16-20, 2013. Proceedings (Lecture Notes in Computer Science), Christian Schulte (Ed.), Vol. 8124. Springer, 823–831.

https://doi.org/10.1007/978-3-642-40627-0_60

Nicholas Nethercote and Julian Seward. 2007. Valgrind: A Framework for Heavyweight Dynamic Binary Instrumentation.

In Proceedings of the 28th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI ’07).
Association for Computing Machinery, New York, NY, USA, 89–100. https://doi.org/10.1145/1250734.1250746

Aina Niemetz, Mathias Preiner, Andrew Reynolds, Clark W. Barrett, and Cesare Tinelli. 2018. Solving Quanti�ed Bit-Vectors

Using Invertibility Conditions. In Computer Aided Veri�cation - 30th International Conference, CAV 2018, Held as Part of
the Federated Logic Conference, FloC 2018, Oxford, UK, July 14-17, 2018, Proceedings, Part II (Lecture Notes in Computer
Science), Hana Chockler and Georg Weissenbacher (Eds.), Vol. 10982. Springer, 236–255. https://doi.org/10.1007/978-3-

319-96142-2_16

Aina Niemetz, Mathias Preiner, Andrew Reynolds, Clark W. Barrett, and Cesare Tinelli. 2021. Syntax-Guided Quanti�er

Instantiation. In Tools and Algorithms for the Construction and Analysis of Systems - 27th International Conference, TACAS
2021, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2021, Luxembourg City,
Luxembourg, March 27 - April 1, 2021, Proceedings, Part II (Lecture Notes in Computer Science), Jan Friso Groote and

Kim Guldstrand Larsen (Eds.), Vol. 12652. Springer, 145–163. https://doi.org/10.1007/978-3-030-72013-1_8

Robert Nieuwenhuis and Albert Oliveras. 2006. On SAT modulo theories and optimization problems. In Proceedings of
the 9th International Conference on Theory and Applications of Satis�ability Testing (SAT’06). Springer-Verlag, Berlin,
Heidelberg, 156–169. https://doi.org/10.1007/11814948_18

Sebastian Poeplau and Aurélien Francillon. 2020. Symbolic execution with SymCC: Don’t interpret, compile!. In 29th USENIX
Security Symposium, USENIX Security 2020, August 12-14, 2020, Srdjan Capkun and Franziska Roesner (Eds.). USENIX

Association, 181–198. https://www.usenix.org/conference/usenixsecurity20/presentation/poeplau

Mathias Preiner, Aina Niemetz, and Armin Biere. 2017. Counterexample-Guided Model Synthesis. In Tools and Algorithms
for the Construction and Analysis of Systems - 23rd International Conference, TACAS 2017, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017, Proceedings, Part I (Lecture
Notes in Computer Science), Axel Legay and Tiziana Margaria (Eds.), Vol. 10205. 264–280. https://doi.org/10.1007/978-3-

662-54577-5_15

John Regehr and Alastair Reid. 2004. HOIST: A System for Automatically Deriving Static Analyzers for Embedded Systems.

In Proceedings of the 11th International Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS XI). ACM, New York, NY, USA, 133–143. https://doi.org/10.1145/1024393.1024410

Thomas Reps and Gogul Balakrishnan. 2008. Improved Memory-access Analysis for x86 Executables. In Proceedings of the
Joint European Conferences on Theory and Practice of Software 17th International Conference on Compiler Construction
(CC’08/ETAPS’08). Springer-Verlag, Berlin, Heidelberg, 16–35. http://dl.acm.org/citation.cfm?id=1788374.1788377

Thomas W. Reps, Shmuel Sagiv, and Greta Yorsh. 2004. Symbolic Implementation of the Best Transformer. In Veri�cation,
Model Checking, and Abstract Interpretation, 5th International Conference, VMCAI 2004, Venice, Italy, January 11-13, 2004,
Proceedings (Lecture Notes in Computer Science), Bernhard Ste�en and Giorgio Levi (Eds.), Vol. 2937. Springer, 252–266.

https://doi.org/10.1007/978-3-540-24622-0_21

Thomas W. Reps and Aditya V. Thakur. 2016. Automating Abstract Interpretation. In Veri�cation, Model Checking, and
Abstract Interpretation - 17th International Conference, VMCAI 2016, St. Petersburg, FL, USA, January 17-19, 2016. Proceedings

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 118. Publication date: October 2021.

http://dl.acm.org/citation.cfm?id=645774.668110
http://dl.acm.org/citation.cfm?id=645774.668110
https://doi.org/10.1007/s10990-006-8609-1
https://doi.org/10.1007/s10990-006-8609-1
https://doi.org/10.1145/1480881.1480899
https://doi.org/10.1007/978-3-642-14295-6_51
https://doi.org/10.1007/978-3-642-14295-6_51
https://doi.org/10.1007/978-3-662-49674-9_53
http://dl.acm.org/citation.cfm?id=2892753.2892928
http://dl.acm.org/citation.cfm?id=2892753.2892928
https://doi.org/10.1007/978-3-642-40627-0_60
https://doi.org/10.1145/1250734.1250746
https://doi.org/10.1007/978-3-319-96142-2_16
https://doi.org/10.1007/978-3-319-96142-2_16
https://doi.org/10.1007/978-3-030-72013-1_8
https://doi.org/10.1007/11814948_18
https://www.usenix.org/conference/usenixsecurity20/presentation/poeplau
https://doi.org/10.1007/978-3-662-54577-5_15
https://doi.org/10.1007/978-3-662-54577-5_15
https://doi.org/10.1145/1024393.1024410
http://dl.acm.org/citation.cfm?id=1788374.1788377
https://doi.org/10.1007/978-3-540-24622-0_21


Program Analysis via E�icient Symbolic Abstraction 118:33

(Lecture Notes in Computer Science), Barbara Jobstmann and K. Rustan M. Leino (Eds.), Vol. 9583. Springer, 3–40. https:

//doi.org/10.1007/978-3-662-49122-5_1

Fabian Ritter. 2015. Compiler Optimizations using Symbolic Abstraction. Ph.D. Dissertation. Saarland University.

Sriram Sankaranarayanan, Franjo Ivančić, Ilya Shlyakhter, and Aarti Gupta. 2006. Static Analysis in Disjunctive Numerical

Domains. In Proceedings of the 13th International Conference on Static Analysis (SAS’06). Springer-Verlag, Berlin, Heidelberg,
3–17. https://doi.org/10.1007/11823230_2

Roberto Sebastiani and Silvia Tomasi. 2015a. Optimization Modulo Theories with Linear Rational Costs. ACM Trans. Comput.
Logic 16, 2, Article 12 (Feb. 2015), 43 pages. https://doi.org/10.1145/2699915

Roberto Sebastiani and Silvia Tomasi. 2015b. Optimization modulo theories with linear rational costs. ACM Trans. Comput.
Logic 16, 2, Article 12 (Feb. 2015), 43 pages. https://doi.org/10.1145/2699915

Roberto Sebastiani and Patrick Trentin. 2015a. OptiMathSAT: A Tool for Optimization Modulo Theories. In Computer
Aided Veri�cation - 27th International Conference, CAV 2015, San Francisco, CA, USA, July 18-24, 2015, Proceedings, Part
I (Lecture Notes in Computer Science), Daniel Kroening and Corina S. Pasareanu (Eds.), Vol. 9206. Springer, 447–454.

https://doi.org/10.1007/978-3-319-21690-4_27

Roberto Sebastiani and Patrick Trentin. 2015b. Pushing the envelope of optimization modulo theories with linear-arithmetic

cost functions. In Proceedings of the 21st International Conference on Tools and Algorithms for the Construction and Analysis
of Systems - Volume 9035. Springer-Verlag, Berlin, Heidelberg, 335–349. https://doi.org/10.1007/978-3-662-46681-0_27

Tushar Sharma, Thomas Reps, and Aditya Thakur. 2013. An Abstract Domain for Bit-Vector Inequalities. Technical Report.
University of Wisconsin-Madison Department of Computer Sciences.

Tushar Sharma and Thomas W. Reps. 2017. Sound Bit-Precise Numerical Domains. In Veri�cation, Model Checking, and
Abstract Interpretation - 18th International Conference, VMCAI 2017, Paris, France, January 15-17, 2017, Proceedings
(Lecture Notes in Computer Science), Ahmed Bouajjani and David Monniaux (Eds.), Vol. 10145. Springer, 500–520. https:

//doi.org/10.1007/978-3-319-52234-0_27

Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls, Nick Stephens, Mario Polino, Andrew Dutcher, John Grosen, Siji

Feng, Christophe Hauser, Christopher Krügel, and Giovanni Vigna. 2016. SOK: (State of) The Art of War: O�ensive

Techniques in Binary Analysis. In IEEE Symposium on Security and Privacy, SP 2016, San Jose, CA, USA, May 22-26, 2016.
IEEE Computer Society, 138–157. https://doi.org/10.1109/SP.2016.17

Axel Simon and Andy King. 2007. Taming the Wrapping of Integer Arithmetic. In Static Analysis, 14th International
Symposium, SAS 2007, Kongens Lyngby, Denmark, August 22-24, 2007, Proceedings (Lecture Notes in Computer Science),
Hanne Riis Nielson and Gilberto Filé (Eds.), Vol. 4634. Springer, 121–136. https://doi.org/10.1007/978-3-540-74061-2_8

Gagandeep Singh, Markus Püschel, and Martin Vechev. 2017a. Fast Polyhedra Abstract Domain. In Proceedings of the 44th
ACM SIGPLAN Symposium on Principles of Programming Languages (POPL 2017). ACM, New York, NY, USA, 46–59.

https://doi.org/10.1145/3009837.3009885

Gagandeep Singh, Markus Püschel, and Martin Vechev. 2017b. A Practical Construction for Decomposing Numerical

Abstract Domains. Proc. ACM Program. Lang. 2, POPL, Article 55 (Dec. 2017), 28 pages. https://doi.org/10.1145/3158143
Gagandeep Singh, Markus Püschel, and Martin Vechev. 2017c. A Practical Construction for Decomposing Numerical

Abstract Domains. Proc. ACM Program. Lang. 2, POPL, Article 55 (Dec. 2017), 28 pages. https://doi.org/10.1145/3158143
Gagandeep Singh, Markus Püschel, and Martin T. Vechev. 2015. Making numerical program analysis fast. In Proceedings of

the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation, Portland, OR, USA, June 15-17,
2015, David Grove and Steve Blackburn (Eds.). ACM, 303–313. https://doi.org/10.1145/2737924.2738000

Gagandeep Singh, Markus Püschel, and Martin T. Vechev. 2018. Fast Numerical Program Analysis with Reinforcement

Learning. In Computer Aided Veri�cation - 30th International Conference, CAV 2018, Held as Part of the Federated Logic
Conference, FloC 2018, Oxford, UK, July 14-17, 2018, Proceedings, Part I (Lecture Notes in Computer Science), Hana Chockler
and Georg Weissenbacher (Eds.), Vol. 10981. Springer, 211–229. https://doi.org/10.1007/978-3-319-96145-3_12

Jia Song and Jim Alves-Foss. 2015. The DARPA Cyber Grand Challenge: A Competitor’s Perspective. IEEE Secur. Priv. 13, 6
(2015), 72–76. https://doi.org/10.1109/MSP.2015.132

Jia Song and Jim Alves-Foss. 2016. The DARPA Cyber Grand Challenge: A Competitor’s Perspective, Part 2. IEEE Secur. Priv.
14, 1 (2016), 76–81. https://doi.org/10.1109/MSP.2016.14

Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher, Ruoyu Wang, Jacopo Corbetta, Yan Shoshitaishvili,

Christopher Kruegel, and Giovanni Vigna. 2016. Driller: Augmenting Fuzzing Through Selective Symbolic Execution. In

23rd Annual Network and Distributed System Security Symposium, NDSS 2016, San Diego, California, USA, February 21-24,
2016. The Internet Society. http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2017/09/driller-augmenting-

fuzzing-through-selective-symbolic-execution.pdf

Allison Sullivan, Darko Marinov, and Sarfraz Khurshid. 2019. Solution Enumeration Abstraction: A Modeling Idiom to

Enhance a Lightweight Formal Method. In Formal Methods and Software Engineering - 21st International Conference on
Formal Engineering Methods, ICFEM 2019, Shenzhen, China, November 5-9, 2019, Proceedings (Lecture Notes in Computer
Science), Yamine Aït Ameur and Shengchao Qin (Eds.), Vol. 11852. Springer, 336–352. https://doi.org/10.1007/978-3-030-

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 118. Publication date: October 2021.

https://doi.org/10.1007/978-3-662-49122-5_1
https://doi.org/10.1007/978-3-662-49122-5_1
https://doi.org/10.1007/11823230_2
https://doi.org/10.1145/2699915
https://doi.org/10.1145/2699915
https://doi.org/10.1007/978-3-319-21690-4_27
https://doi.org/10.1007/978-3-662-46681-0_27
https://doi.org/10.1007/978-3-319-52234-0_27
https://doi.org/10.1007/978-3-319-52234-0_27
https://doi.org/10.1109/SP.2016.17
https://doi.org/10.1007/978-3-540-74061-2_8
https://doi.org/10.1145/3009837.3009885
https://doi.org/10.1145/3158143
https://doi.org/10.1145/3158143
https://doi.org/10.1145/2737924.2738000
https://doi.org/10.1007/978-3-319-96145-3_12
https://doi.org/10.1109/MSP.2015.132
https://doi.org/10.1109/MSP.2016.14
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2017/09/driller-augmenting-fuzzing-through-selective-symbolic-execution.pdf
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2017/09/driller-augmenting-fuzzing-through-selective-symbolic-execution.pdf
https://doi.org/10.1007/978-3-030-32409-4_21
https://doi.org/10.1007/978-3-030-32409-4_21


118:34 Peisen Yao, Qingkai Shi, Heqing Huang, and Charles Zhang

32409-4_21

Aditya V Thakur, Matt Elder, and Thomas W Reps. 2012. Bilateral Algorithms for Symbolic Abstraction.. In Proceedings
of the 19th International Conference on Static Analysis (SAS’12). Springer-Verlag, Berlin, Heidelberg, 111–128. https:

//doi.org/10.1007/978-3-642-33125-1_10

Aditya V. Thakur, Akash Lal, Junghee Lim, and Thomas W. Reps. 2015. PostHat and All That: Automating Abstract

Interpretation. Electron. Notes Theor. Comput. Sci. 311 (2015), 15–32. https://doi.org/10.1016/j.entcs.2015.02.003
Aditya V. Thakur and Thomas W. Reps. 2012. A Method for Symbolic Computation of Abstract Operations. In Computer

Aided Veri�cation - 24th International Conference, CAV 2012, Berkeley, CA, USA, July 7-13, 2012 Proceedings (Lecture Notes
in Computer Science), P. Madhusudan and Sanjit A. Seshia (Eds.), Vol. 7358. Springer, 174–192. https://doi.org/10.1007/978-

3-642-31424-7_17

Shiyi Wei, Piotr Mardziel, Andrew Ruef, Je�rey S. Foster, and Michael Hicks. 2018. Evaluating Design Tradeo�s in Numeric

Static Analysis for Java. In Programming Languages and Systems - 27th European Symposium on Programming, ESOP
2018, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2018, Thessaloniki, Greece,
April 14-20, 2018, Proceedings (Lecture Notes in Computer Science), Amal Ahmed (Ed.), Vol. 10801. Springer, 653–682.

https://doi.org/10.1007/978-3-319-89884-1_23

Christoph M Wintersteiger, Youssef Hamadi, and Leonardo De Moura. 2013. E�ciently solving quanti�ed bit-vector

formulas. Form. Methods Syst. Des. 42, 1 (Feb. 2013), 3–23. https://doi.org/10.1007/s10703-012-0156-2
Bo-Han Wu and Chung-Yang (Ric) Huang. 2013. A robust constraint solving framework for multiple constraint sets in

constrained random veri�cation. In The 50th Annual Design Automation Conference 2013, DAC ’13, Austin, TX, USA, May
29 - June 07, 2013. ACM, 119:1–119:7. https://doi.org/10.1145/2463209.2488880

Greta Yorsh, Thomas W. Reps, and Shmuel Sagiv. 2004. Symbolically Computing Most-Precise Abstract Operations for Shape

Analysis. In Tools and Algorithms for the Construction and Analysis of Systems, 10th International Conference, TACAS 2004,
Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2004, Barcelona, Spain, March
29 - April 2, 2004, Proceedings (Lecture Notes in Computer Science), Kurt Jensen and Andreas Podelski (Eds.), Vol. 2988.

Springer, 530–545. https://doi.org/10.1007/978-3-540-24730-2_39

Insu Yun, Sangho Lee, Meng Xu, Yeongjin Jang, and Taesoo Kim. 2018. QSYM : A Practical Concolic Execution Engine

Tailored for Hybrid Fuzzing. In Proceedings of the 27th USENIX Conference on Security Symposium (SEC’18). USENIX
Association, Berkeley, CA, USA, 745–761. http://dl.acm.org/citation.cfm?id=3277203.3277260

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 118. Publication date: October 2021.

https://doi.org/10.1007/978-3-030-32409-4_21
https://doi.org/10.1007/978-3-030-32409-4_21
https://doi.org/10.1007/978-3-642-33125-1_10
https://doi.org/10.1007/978-3-642-33125-1_10
https://doi.org/10.1016/j.entcs.2015.02.003
https://doi.org/10.1007/978-3-642-31424-7_17
https://doi.org/10.1007/978-3-642-31424-7_17
https://doi.org/10.1007/978-3-319-89884-1_23
https://doi.org/10.1007/s10703-012-0156-2
https://doi.org/10.1145/2463209.2488880
https://doi.org/10.1007/978-3-540-24730-2_39
http://dl.acm.org/citation.cfm?id=3277203.3277260

	Abstract
	1 Introduction
	1.1 Symbolic Abstraction
	1.2 Our Work

	2 Background and Problem Formulation
	2.1 Symbolic Abstraction
	2.2 Optimization Modulo Theories
	2.3 Problem Formulation

	3 Symbolic Interval Abstraction
	3.1 Basic Binary Search
	3.2 Factorizing the Search
	3.3 Putting It All Together

	4 Symbolic Polyhedral Abstraction
	4.1 The RSY Algorithm
	4.2 Our Approach

	5 On Overflow and Underflow
	6 Implementation and Applications
	6.1 Memory Corruption Analysis with TaichiInt
	6.2 Constrained Random Fuzzing with TaichiPoly

	7 Evaluation
	7.1 Interval Abstraction
	7.2 Polyhedra Abstraction
	7.3 Discussions

	8 Related Work
	8.1 Symbolic Abstraction
	8.2 Automated Reasoning

	9 Conclusion
	References

