Complexity-Guided Container Replacement Synthesis

CHENGPENG WANG, The Hong Kong University of Science and Technology, China
PEISEN YAOQ, The Hong Kong University of Science and Technology, China
WENSHENG TANG, The Hong Kong University of Science and Technology, China
QINGKAI SHI, Ant Group, China

CHARLES ZHANG, The Hong Kong University of Science and Technology, China

Containers, such as lists and maps, are fundamental data structures in modern programming languages.
However, improper choice of container types may lead to significant performance issues. This paper presents
CRES, an approach that automatically synthesizes container replacements to improve runtime performance.
The synthesis algorithm works with static analysis techniques to identify how containers are utilized in the
program, and attempts to select a method with lower time complexity for each container method call. Our
approach can preserve program behavior and seize the opportunity of reducing execution time effectively
for general inputs. We implement CREs and evaluate it on 12 real-world Java projects. It is shown that CREs
synthesizes container replacements for the projects with 384.2 KLoC in 14 minutes and discovers six categories
of container replacements, which can achieve an average performance improvement of 8.1%.

CCS Concepts: « Theory of computation — Program analysis; « Software and its engineering —
Software performance; Data types and structures.

Additional Key Words and Phrases: program synthesis, program optimization, data structure specification.

ACM Reference Format:

Chengpeng Wang, Peisen Yao, Wensheng Tang, Qingkai Shi, and Charles Zhang. 2022. Complexity-Guided
Container Replacement Synthesis. Proc. ACM Program. Lang. 6, OOPSLA1, Article 68 (April 2022), 31 pages.
https://doi.org/10.1145/3527312

1 INTRODUCTION

General-purposed programming languages, including Java and C++, support a variety of containers,
which creates great convenience of developing software systems. Unfortunately, performance issues
often emerge because of inefficient usage of container types. Programmers are often unaware of
more efficient container types under their development context and tend to choose the container
types that they are most familiar with. For example, in the program shown in Figure 1, the use
of the container type ArrayList introduces unnecessary time overhead because the method, Ar-
rayList.contains, performs linear searching. The same functionality can be supported efficiently by
the class HashSet. It is quite surprising to find that 16% of execution time of the 3D design software,
Raytrace, is introduced by inefficient container types [Jung et al. 2011], affecting the performance
of ray tracing greatly. Moreover, there is abundant evidence that inefficient containers also increase

Authors’ addresses: Chengpeng Wang, Department of Computer Science and Engineering, The Hong Kong University of
Science and Technology, China, cwangch@ust.cse.hk; Peisen Yao, Department of Computer Science and Engineering, The
Hong Kong University of Science and Technology, China, pyao@cse.ust.hk; Wensheng Tang, Department of Computer
Science and Engineering, The Hong Kong University of Science and Technology, China, wtangae@cse.ust.hk; Qingkai Shi,
Ant Group, China, qingkai.sqgk@antgroup.com; Charles Zhang, Department of Computer Science and Engineering, The
Hong Kong University of Science and Technology, China, charlesz@cse.ust.hk.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2022 Copyright held by the owner/author(s).

2475-1421/2022/4-ART68
https://doi.org/10.1145/3527312

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 68. Publication date: April 2022.

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3527312
https://doi.org/10.1145/3527312

68:2 Chengpeng Wang, Peisen Yao, Wensheng Tang, Qingkai Shi, and Charles Zhang

public List load(String[] a, int n) { public void check(String[] a, String s) {
List<String> u = new ArrayList<>(); List v = load(a, a.length);
for (int i = 0; i < n; i++) if (v.contains(s))
if (lu.contains(alil)) u.add(alil); return true;
return u; return false;
3 3

Fig. 1. An efficient usage of ArrayList in the project iotdb

other resource consumption, including memory [Basios et al. 2018; Jung et al. 2011], energy [Hasan
et al. 2016; Manotas et al. 2014; Oliveira et al. 2021], and CPU usage [Basios et al. 2018].

Goal and Challenge. Given a set of container types, our goal is to synthesize alternative
container types and the associated methods at the container allocation sites and the container
method call sites, respectively, such that the program after replacements preserves the original
semantics and executes more efficiently for large inputs. We also expect our synthesis algorithm
to be general enough, supporting the program optimization to decrease other kinds of resource
consumptions, such as the memory and CPU usage.

However, it is far from trivial to achieve the goal. First, we can not determine the container
types to replace the original ones without violating the behavioral equivalence [Nicola 2011] if
we do not know how container objects are manipulated. Although several container types are
interchangeable, e.g., ArrayList and LinkedList, the replacement patterns might be quite restrictive.
Second, it is far from practical to derive a tight bound of the time complexity for a general container-
manipulating program [Gulwani et al. 2009a,c; Wilhelm et al. 2008], so we can not explicitly compare
the complexity of the program before and after replacements to guide the synthesis.

Existing Effort. The existing works attempt to tackle the problem from two perspectives.
One line of the existing approaches attempts to find optimal container usage by minimizing the
resource consumption upon a given test suite [Basios et al. 2018; Manotas et al. 2014]. They mutate
container types and evaluate the resource consumption via dynamic profiling until the minimal
consumption is reached. The other line of the works selects better container types by performing a
prediction task [Jung et al. 2011; Kennedy and Ziarek 2015; Shacham et al. 2009]. Based on the heap
information and container usage patterns in a specific execution, they predict optimal container
types by utilizing a prediction model, which is specified manually or obtained in a training process.
Unfortunately, the existing works suffer from three drawbacks:

o Huge time overhead. They rely on the execution of the test suite, making the whole process quite
time consuming [Jung et al. 2011; Manotas et al. 2014]. Particularly, the first line of the works
executes the test suite iteratively to find the optimal selection and suffer the huge time overhead.
For example, [Basios et al. 2018] takes 3.1 hours optimizing a project on average, which poses an
enormous obstacle to large-scale adoption.

o Unsoundness. They can not guarantee the semantic equivalence of the program, as they can not
discover how each container object is manipulated and determine the equivalent container types
soundly. Although several approaches assume several container types are interchangeable [Basios
et al. 2018; Jung et al. 2011], the assumptions do not hold in certain cases, such as transforming
LinkedHashMap to HashMap in the presence of map traversal.

o Overfitting. The effectiveness of the optimization can be degraded when the test suite or the
training data does not provide general inputs. The program after replacements can execute slower
when the inputs exercise the program along previously uncovered paths [Xu 2013].

Insight and Solution. We observe that container method calls reveal the intention of the pro-
grammers for which they use the containers. Specifically, programmers concern with specific

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 68. Publication date: April 2022.

Complexity-Guided Container Replacement Synthesis 68:3

container properties, such as the size, index or value-ownership, and index-value correlation. Con-
tainer methods allow programmers to manipulate a container object by querying and modifying
container properties. Our insight is that we can optimize a container-manipulating program if the
intention can be achieved by other container types and methods with lower time complexity. In
Figure 1, for example, the ArrayList object allocated in the method load is only manipulated by the
methods ArrayList.add and ArrayList.contains. The programmers only wish to know whether an
element is stored in the list, i.e., the value-ownership property of the ArrayList object. Thus, we
can replace ArrayList with HashSet to avoid linear searching caused by ArrayList.contains, thereby
improving program efficiency.

Based on the insight, we present CREs, a container replacement synthesizer to improve program
efficiency. CREs synthesizes container replacements preserving program behavior and achieves the
optimization for general inputs.

o To assure the behavioral equivalence, we propose the notion of container behavioral equivalence to
determine the method candidates. Specifically, CREs analyzes container method calls to determine
the concerned container properties. A method is a candidate of a container method call if it
queries and modifies the concerned container properties in the same way as the original one.

e To achieve the optimization, we introduce the concept of container complexity superiority to
constrain the complexity of container methods in the replacements. Specifically, CREs selects
methods with low complexity from candidates so that the total complexity of the container
method calls manipulating the object is lower than the one in the original program.

With the benefit of our insight, CREs can find the opportunity of achieving input-agnostic
optimization and improve program efficiency significantly. To the best of our knowledge, CREs is
the first work to guarantee the behavior equivalence without any assumption on interchangeable
container types. Moreover, CREs escapes from the burden of huge overhead because it does rely on
program execution and performs efficient static reasoning.

We evaluate CRES upon 12 real-world Java projects with intensive usage of containers in Java
Collections Framework (JCF), of which the sizes range from 18.6 KLoC to 384.2 KLoC. CREs
synthesizes 107 replacements covering six categories [Cres 2021], such as replacing ArrayList
with HashSet, replacing TreeMap with HashMap, etc. Particularly, 71 replacements in six projects
have been confirmed by the developers. The time consumption of each project is decreased by
8.1% on average after replacements. Moreover, CREs finishes analyzing any project in 14 minutes,
which distinguishes it from existing approaches suffering from the heavy time burden [Basios et al.
2018; Manotas et al. 2014]. We also prove its soundness theoretically to guarantee the behavioral
equivalence. CREs has been integrated into the static analysis platform in the Ant Group, an
international IT company providing the financial service for over 1 billion global users. In summary,
we make the following main contributions:

e We propose a novel abstraction of containers and introduce two principled notions, namely
container behavioral equivalence and container complexity superiority, to guide the synthesis.

e We establish an abstract domain and propose the container property analysis to guarantee the
behavioral equivalence of the programs.

e We implement a synthesis framework CRres and evaluate it on real-world Java applications,
showing that it synthesizes replacements efficiently and significantly improves program efficiency.

2 CRESIN ANUTSHELL

In this section, we present a motivating example to state the importance of replacing inefficient
containers for program efficiency improvement (§ 2.1), and illustrate the key idea of our approach
to solving the problem of complexity-guided container replacement synthesis (§ 2.2).

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 68. Publication date: April 2022.

68:4 Chengpeng Wang, Peisen Yao, Wensheng Tang, Qingkai Shi, and Charles Zhang

1 public List getResources(String dir
P . & . (X &) ¢ 25 public List getAllFiles(String dir) {
2 List r = new ArrayList<File>(); //o02 X X .
: . . . 26 List f = new ArrayList<File>(); //026
3 for (int i = Q; i < RES_NUM; i++) { . R R ;
. . . . 27 for (int i = @; i < N_FILE; i++)
4 File s = getFile(dir, 1i); . . K
. . 28 f.add(getFile(dir, 1i));
5 if (!r.contains(s))
29 return f;
6 r.add(s); 30 3
7 3
31 public void access(String dir, int token
8 return r; P (g > {

32 List f
33 List r
34 List p
35 List q
36 for (File file : f) {

getAllFiles(dir);
getResources ("/00PSLA");
getPrivate("/Data");
getProtected("/Data");

9 3

10 public List getPrivate(String dir) {
11 List p = new ArraylList<File>(); //ol1
12 for (int i = @; i < N_PRIVATE; i++)

13 .add tPrivateFile (di i));
i rerum (getPrivatefile(dir, 1)); 37 if (linvisible(p)
15 3 P 38 &% p.contains(file))
16 public List getProtected(String dir) { zi ifcz?ti:\r\:lij;ble()
17 List q = new ArraylList<File>(); //ol17 o B coztains(ﬁle>
18 for (int i = @; i < N_PROTECTED; i++) q'. .
R . . 41 && g.index0f (file) > token)

19 q.add(getProtectedFile(dir, i)); .
20 return q: 42 continue;
23 a; 43 if (r.contains(file))

44 . . intln("A ")
22 public boolean invisible(ArrayList 1) { 45 3 System.out.println("Access");
23 return 1l.contains (INVISIBLE_FILE); 46 3

24 '}

Fig. 2. A motivating program accessing the available and visible files in a specific directory

2.1 Motivating Example

Figure 2 presents the example extracted and simplified from the projects iotdb and google-http-
java-client. The container objects 0,, 011, 017, and 04 are allocated by the allocation statements at
lines 2, 11, 17, and 26, respectively. The methods getAllFiles and getResources collect the files in
the directories named dir and OOPSLA, and store them in 0y and oy, respectively. The methods
getPrivate and getProtected collect the files demanding two different access privileges and store
them in two ArrayList objects 017 and 017, respectively. We can obtain three observations as follows.

e The ArrayList object o, is manipulated by the methods ArrayList.add and ArrayList.contains, so
the programmers only wish to know whether an element is stored in 05, i.e., the value-ownership
of 0,. Notice that a HashSet object also supports the value-ownership checking and returns
the same result. Besides, the method HashSet.contains works with amortized constant time.
Therefore, the program will be more efficient if we replace ArrayList with HashSet at line 2.

e The ArrayList object 054 is manipulated by the insertions and traversal. The methods of LinkedList
also support the same functionalities. Besides, the method LinkedList.add runs in constant time
complexity while the method ArrayList.add works with amortized constant time because of
memory reallocation. Thus, we can replace ArrayList with LinkedList to reduce time consumption.

e The ArrayList object 01 is created for the value-ownership checking. However, 01; and 047 are
provided as the parameters of the method invisible. The programmers are concerned about the
index-value correlation of 017 in the invocation of the method ArrayList.indexOf. If we replace
the type of 01; with HashSet, the code cleanliness can be degraded, as the method invisible should
be inlined at two call sites. Thus, we only leverage LinkedList to avoid memory reallocation.

The replacements can bring a significant improvement in program efficiency. For example, the
total execution time of the corresponding test cases in google-http-java-client can be reduced by
27.1% if we replace an ArrayList object with a LinkedList object. A large body of literature also
reveals that inefficient container types can introduce unnecessary time consumption and even
increase time complexity [Basios et al. 2018; Jung et al. 2011; Shacham et al. 2009]. Thus, it is
meaningful to synthesize container replacements to improve program efficiency.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 68. Publication date: April 2022.

Complexity-Guided Container Replacement Synthesis 68:5

Method >
Specification *

Method
Synthesizer]Z[Verifier

Candidates
Fig. 3. Schematic overview of our approach

Container
Container Property |Properties
Analysis

Method Candidate
Identification

Program P

2.2 Synthesizing Replacement

The synthesized container replacements should preserve the program behavior and achieve the
optimization for large inputs. Unfortunately, it is non-trivial to find the replacements satisfying
the two constraints. First, we can not determine which container types can guarantee the behav-
ioral equivalence after replacements if we do not know how container objects are manipulated.
Even if several container types are interchangeable in any usage context, such as LinkedList and
ArrayList, more general replacements, such as transforming the type of o, to HashSet, can not
be discovered [Basios et al. 2018; Oliveira et al. 2021; Shacham et al. 2009]. Second, it is far from
practical to derive a tight bound of the time complexity for a real-world program [Gulwani et al.
2009a,c; Wilhelm et al. 2008]. We need an effective and computable measure to guide the synthesis
such that the synthesis can achieve the input-agnostic optimization for large inputs.

The key idea of our approach comes from the observation about the intention of container usage.
We realize that the purpose of programmers is to utilize specific facts about containers, which we
call container properties. Programmers can query and update the container properties by invoking
container methods. In Figure 2, for example, the programmers are concerned about the value-
ownership of 0y, i.e., the fact that whether an object is stored in 0,. The methods ArrayList.contains
and Arraylist.add query and update the value-ownership, respectively. When the concerned
properties can be updated and queried by more efficient methods in the same way, we can replace
the types and methods to improve program efficiency. Specifically, we propose two concepts to
address the challenges:

e We introduce container behavioral equivalence to determine the methods that query and update the
concerned properties in the same way as the original ones. For instance, only the value-ownership
of 0, is concerned in Figure 2, and the methods of HashSet guarantee the container behavioral
equivalence. Thus, replacing it with a HashSet object preserves the behavioral equivalence.

e We propose container complexity superiority to measure whether the methods manipulating a
container object are more efficient after replacements. In Figure 2, HashSet.contains has much
lower time complexity than ArrayList.contains, and HashSet.add and ArrayList.add do not have
significant difference in complexity. After transforming the type from ArrayList to HashSet, the
new program has container complexity superiority.

Based on our insight, we can improve the program efficiency for general inputs if the replace-
ments guarantee the container behavioral equivalence and the container complexity superiority
simultaneously. Figure 3 shows the workflow of our approach, which consists of three stages.

o In the first stage, the container property analysis identifies which container properties are queried
and how they are updated upon each container object in the program. For example, it can discover
that only the value-ownership is queried upon o, and 017 in Figure 2.

e In the second stage, the methods are identified as the method candidates if they the preserve
container behavioral equivalence. For instance, the methods HashSet.contains and HashSet.add
are the candidates of the container method calls at line 5, 6, and 43, as they query and update the
value-ownership in the same way as the methods ArrayList.contains and ArrayList.add.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 68. Publication date: April 2022.

68:6 Chengpeng Wang, Peisen Yao, Wensheng Tang, Qingkai Shi, and Charles Zhang

Program P := F+
Container method Fc := fo(v1,...,0m)
Function F := f(vy,...,v,){S; return e}
Statement S:=v =new 7 |v=-¢|S51;5; | returne
| if (e) then S; else S, | while (e) do S od
lv=c.fc(v1,...,0m) | v = f(v1,...,0p)
Expression e:=a|v|u ®uz | Qu
Variable v :=c|u
Operator ® :=A|V |+ | -] =]+ Q== -] -

Fig. 4. The syntax of the language

o In the third stage, we instantiate a CEGIS paradigm [Alur et al. 2013; Gulwani et al. 2011; Solar-
Lezama et al. 2008] to synthesize container types and methods. A synthesizer selects efficient
method candidates and resolves the counterexamples in the consequent rounds if type checking
fails in the verification. For instance, the actual parameters of the method invisible are inconsistent
at lines 37 and 39 if we replace 0;; with a HashSet object, so the synthesizer refines the type of
011 by selecting another type LinkedList in a consequent round.

Specifically, the generation and selection of method candidates both rely on sound reasoning
about the queried container properties and how they are updated in the program. Technically, we
establish an abstract domain to abstract the container-property queries in the program, which guide
the generation of method candidates and further guarantee the container behavioral equivalence.

With the benefits of our insight, our approach stands out due to the following three perspectives.

o The low overhead introduced by the synthesis. The synthesis algorithm does not rely on any input
and execution of the program, and static reasoning of container properties is sufficient to identify
candidates with quite low overhead.

e Sound and various replacements. The algorithm analyzes the concerned container properties to
guide method candidate identification, which not only guarantees the behavioral equivalence but
also discovers the replacements uncovered by existing approaches, such as replacing ArrayList
with HashSet, and replacing LinkedHashMap with HashMap.

o Input-agnostic optimization. The algorithm utilizes the complexity specification of container
methods to guide the synthesis so that the replacements are insensitive to the program inputs,
and the time complexity of the program is more likely to be decreased.

3 PROBLEM FORMULATION

In this section, we first present the language used in this paper and its concrete state (§ 3.1). We
then define the behavioral equivalence (§ 3.2) to constrain the program behavior after container
replacements. Finally, we formalize the problem of complexity-guided container replacement
synthesis (§ 3.3).

3.1 Program Syntax and Concrete State

Let C and M denote the family of the container types and their methods, respectively. Also,
we let method denote the function mapping a container type 7 to the set of container methods
supported by 7. Figure 4 shows the syntax of the language. The expressions include literals,
variable expressions, and unary/binary expressions. A statement can be an allocation statement, an

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 68. Publication date: April 2022.

Complexity-Guided Container Replacement Synthesis 68:7

public boolean fool(String a) { public boolean foo2(String a) {
List<String> 1 = new ArrayList<>(); Set<String> s = new HashSet<>();
1.put("PL"); 1l.put("SE"); s.add("PL"); s.add("SE");
boolean b1 = 1l.contains(a); boolean b2 = s.contains(a);
return bi; return b2;

3 3}

Fig. 5. Two behaviorally equivalent programs

assignment, a sequencing, a branch, a loop, a function call, or a return statement. Particularly, a
function call is either an invocation of a user-defined function f or a container method f; with
the receiver container c. A program has a unique function as its entry, which has a unique return
statement.

We denote the sets of program variables and values by Var and Val := Addr U OVal, respectively.
Specifically, Addr is a set of addresses of objects, OVal is a set of non-address values, and Idx C Val
includes the index values of the containers. Formally, we can define the concrete state as follows.

Definition 3.1. (Concrete State) A concrete state s € State is a 3-tuple (e, p1,), where

o An environment ¢ € Env := Var — Val maps a set of variables Var to a set of values Val.

e A memory p € Mem := (Addr, Idx) — Val maps a pair of an address and an index to a value,
which is the value stored at the index of a container object.

o A base f € Base := Addr — U, where U := {((A, <1),...,(A, =k)) | A C ldx}, maps an address
to a k-tuple, of which the entry is a partially ordered set. Each partial order <; determines a
specific order of the indexes of the container object stored at the address.

The concrete state supports the semantics of container methods with various features. In JCF, for
instance, TreeMap supports accessing the value associated to the largest key, and LinkedHashMap
supports iterating according to the insertion order. These advanced features can be expressed by
specific partial orders in the base.

Example 3.2. Consider the function foo1 in Figure 5. At the exit of the function, we have £(I) = ay,
p(ay,0) = “PL” and p(ay, 1) = “SE”, where a; is the address where the ArrayList object is allocated.
Particularly, we enforce f(a;) equal to @, as its semantics does not rely on any order of the indexes.

3.2 Behavioral Equivalence

The program after the replacements should preserve the semantic equivalence. Based on the
concrete state, we define the behavioral equivalence [Nicola 2011] for two programs to constrain
the input-output relationship, which is a specific form of program behavior.

Definition 3.3. (Behavioral Equivalence) P is behaviorally equivalent to P’, denoted by P ~ P’, if
and only if for any input, the expressions e and e’ in the return statements of the entry functions
evaluate to the same value, i.e., [e]|(s) = [[¢’]I(s"). [[e]] is the function mapping a concrete state to
the value of the expression. s and s” are the concrete states of P and P’ at the exits, respectively.

Example 3.4. Suppose that s; = (e, pi1, f1) and s = (€2, pi2, f2) are the concrete states at the exits
of the functions foo1 and foo2 in Figure 5, respectively. We have ¢1(b1) = T and &,(b2) = T iff a is
equal to “PL” or “SE”, i.e., [b1]|(s1) = [[b2]|(s2), indicating that they are behaviorally equivalent.

Behavioral equivalence defines an equivalence relation between two programs based on the
input-output relationship, which is a program behavior concerned in many scenarios [Nicola
2011]. The program after replacements should be behaviorally equivalent to the original program,
preserving the semantics we are concern about.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 68. Publication date: April 2022.

68:8 Chengpeng Wang, Peisen Yao, Wensheng Tang, Qingkai Shi, and Charles Zhang

3.3 Problem Statement

To synthesize container replacements, we identify the allocation statements of container objects
and container method calls as the skeleton of synthesis. Given a program P, we denote the set of
the two kinds of statements by S. In what follows, we let S, € S and S, € S denote the sets of
container allocation statements and container method calls, respectively. We state the problem of
complexity-guided container replacement synthesis as follows.

Definition 3.5. (Complexity-Guided Container Replacement) Given a program P, we aim to
synthesize the replacement mappings ¥, : S — Mand ¢, : S, — C. For st € S. and st, € S,
we replace the container method f invoked by st, with ¢, (st.), and replace the container type ¢
used in st, with /,(st,), which should satisfy: (1) Behavioral equivalence: P’ and P are behavioral
equivalent; (2) Complexity superiority: P’ consumes no more time than P for any large input.

Intuitively, the behavioral equivalence and the complexity superiority formulate our expectations
on the new program after replacements. To solve the problem, we establish the abstraction for
containers in § 4 and design the synthesis algorithm to synthesize the container replacement
mappings in § 5.

Remark. We only concentrate on the statement-wise replacements synthesis in our problem. A
major advantage of performing such a form of replacements is that the program structure is not
affected by the replacements. If we conduct more aggressive changes to the code, e.g., defining
two functions to replace the invocation of the function invisible at lines 37 and 39 in Figure 2, the
program after replacements can have a big difference from the original one, which degrades the
code cleanliness and increases the difficulty of the maintenance.

4 PROGRAM ABSTRACTION

In this section, we first introduce the notion of the container-property query and establish the
abstract states (§ 4.1). We then propose the method semantic specification and define the concept
of the container behavioral equivalence to guarantee the behavioral equivalence (§ 4.2). Finally, we
define the notion of the container complexity superiority as the heuristic guidance to synthesize
replacements satisfying the complexity superiority (§ 4.3).

4.1 Container Property Abstraction

As explained in § 2.2, we can represent the intention of utilizing containers by the concerned
container properties, which are specific forms of facts about containers. To show the intention of
container usage, we define the container-property query (§ 4.1.1) and establish an abstract domain
to abstract the concerned container properties (§ 4.1.2).

4.1.1 Container-Property Query. We introduce the concept of the container property to indicate the

intention of container usage. A container property is essentially a numeric quantity or a predicate

upon the indexes and the values of a container object. Intuitively, it is a specific form of facts about

a container object. Table 1 shows the typical container properties of commonly-used container

types in JCF, which depict the following facts.

e size shows the size of a container object, i.e., the number of the values in the container.

e isldx(1) and isVal(v) indicate the index-ownership and value-ownership, respectively. A or v is
an index or a value of the container if and only if isldx(1) = T or isVal(v) = T.

e isCor(A, v) indicates the index-value correlation. The index A is paired with the value v if and
only if isCor(A,v) = T.

e InsOrd(Ay, A7) indicates the insertion order of indexes. A; is inserted before A, if and only if
InsOrd(Ay,A5) = T.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 68. Publication date: April 2022.

Complexity-Guided Container Replacement Synthesis 68:9

Table 1. Examples of container properties

size isldx(4) isVal(v) isCor(4,v) InsOrd(A;,4;) KeyOrd(A,Az)

v
v

ArrayList
LinkedList
HashSet

TreeSet
LinkedHashSet
HashMap
TreeMap
LinkedHashMap

SENENENENENENEN
SNEN

SENENENENEN
SNENENENENEN

v
v v
v v

e KeyOrd(A4, A7) indicates the order of keys. A; is larger than A, if and only if KeyOrd(41,4;) = T.

Let Property denote the family of the container properties. Based on the concept of the container
property, we define the container-property query to formalize which container property is
utilized by a container method call.

Definition 4.1. (Container-Property Query) A container-property query is a function ¢ mapping
a pair of a concrete state and a container variable to a container property p, i.e.,

q : State X Var — Property
(s,¢) = p

Furthermore, we can construct a family of container-property queries Q to represent all the
possible container-property queries induced by container methods.

Example 4.2. Consider the container type LinkedHashMap as an example. The methods Linked-
HashMap.containsKey and LinkedHashMap.containsValue induce the queries of the container
properties isldx(A) and isVal(v), respectively. Besides, the method LinkedHashMap.get queries the
container property isCor(4, v). Its iterator also queries the container property InsOrd(Ay, A,), as its
semantics relies on the insertion order.

4.1.2 Abstract State. Based on container-property queries, we can establish an abstraction of
concrete states in § 3.1. To assure the boundedness of the abstract domain, we adopt the allocation
site-based memory abstraction [Kanvar and Khedker 2016], and introduce an abstract object to
summarize the memory objects allocated by the same allocation statement. Formally, we define the
abstract state for container-manipulating programs as follows.

Definition 4.3. (Abstract State) V, is the set of container variables and O, is the set of abstract
container objects. An abstract state is's = (¢, p), where

e £: V., — 2% indicates the points-to fact of container variables. For each container variable
¢ € V,, €(c) is the set of abstract container objects which ¢ may point to.

e 5 : 0. — 29 indicates the property-query fact of container objects. For each container object
0 € O, p(o) contains the container-property queries occurring upon the object o.

Example 4.4. Consider the function foo1 in Figure 5. We have O, = {02}, where o, is the ArrayList
object allocated at line 2. The container object is only created for the value-ownership checking.
Before the return statement, the abstract state is (¢, p), where () = {02}, p(02) = {q}, and gq(s, ¢) is
isVal(v), indicating that only the value-ownership of 0, is concerned in the program.

Intuitively, an abstract state abstracts away the facts irrelevant to container variables and objects.
Based on the abstract state, we can determine how a container object is utilized in the program
by identifying (1) which container objects are manipulated and (2) which container properties are

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 68. Publication date: April 2022.

68:10 Chengpeng Wang, Peisen Yao, Wensheng Tang, Qingkai Shi, and Charles Zhang

concerned. The abstract state provides sufficient information about the intention of container usage
and enables us to examine the behavioral equivalence.

4.2 Behavior Constraint

Based on our insight, the behavioral equivalence must hold if the container properties are queried
and updated in the same way as the original program. To formulate the criteria explicitly, we first
introduce the notion of the container-property modifier and provide a novel representation of
method semantic specification (§ 4.2.1). We then propose the container behavioral equivalence to
specify the constraints that guarantee the behavioral equivalence (§ 4.2.2).

4.2.1 Method Semantic Specification. To maintain the container content for further queries in
the program, each container method updates the memory p and base f§ in the concrete state
and modifies the container properties. To depict the effect of a container method, we define the
container-property modifier formally as follows.

Definition 4.5. (Container-Property Modifier) A container-property modifier is a function ¢
mapping a 4-tuple, which consists of a container variable, a tuple of parameter variables, a concrete
state, and a container property, to a container property, i.e.,

t : Var X Var® X State X Property — Property

(c,args,s,p) — p’
where p and p’ indicate the container properties before and after applying the modifier, respectively.

Similar to container-property queries, we can construct a family of container-property modifiers
7 to enumerate all the possible effects of container methods.

Example 4.6. Suppose that the language only supports the usage of LinkedHashMap. A container-
property modifier can be one of the following forms: (1) Increasing or decreasing the size by at most
one; (2) Inserting or removing an index or a value; (3) Inserting or removing a pair; (4) Inserting or
removing an element from the partially ordered set, which preserves the insertion order.

Notice that a container-property modifier can affect several container properties. To show the
effect explicitly, we establish a function ws: 7~ — 22 mapping a container-property modifier to
the set of the container-property queries affected by it. For instance, when ¢ inserts or removes an
element in the i-th partially ordered set of the base, it can affect the query of i-th partial order.

Given a container method, its semantics is essentially a combination of two orthogonal parts,
namely specific container-property queries and container-property modifiers. Formally, we can
define the method semantic specification as follows.

Definition 4.7. (Method Semantic Specification) The method semantic specification is a function
am : M — 29 %27 Fora given fe € M, (Q,T) := apm(fc) indicates the container-property
queries and the container-property modifiers induced by f¢, respectively.

Example 4.8. The method semantic specification maps the method LinkedHashMap.get to
({q}, @), where q(s,c) = isCor(A,v). Similarly, the method LinkedHashMap.put is mapped to
(@,{t1, t2, ts, t4, t5}), where t; increases the size by at most one, and ¢; (2 < i < 5) insert an

element or a pair to update isldx(4), isVal(v), isCor(4, v), and InsOrd(A;, A2), respectively.

The method semantic specification describes the semantics of container methods in a compact
way, blurring the details of how the memory is updated and container property is computed. Using
the abstraction, we propose the container property analysis in § 5.1 to compute the abstract states,
which maintain the concerned container properties of each container object. The properties provide
sufficient guidance to guarantee the behavioral equivalence in the container replacements.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 68. Publication date: April 2022.

Complexity-Guided Container Replacement Synthesis 68:11

4.2.2 Container Behavioral Equivalence. To guarantee the behavioral equivalence in the container
replacements, the container methods in the new program P’ should query and modify the concerned
container properties in the same way as the ones in the program P. Besides, we need to constrain
the types of container objects manipulating by the same container method call, which should be
equal to assure that P’ is well-typed. To provide the criteria of the behavioral equivalence for our
problem explicitly, we define the container behavioral equivalence formally as follows.

Definition 4.9. (Container Behavioral Equivalence) Given two programs P and P’, where P’ is
obtained by applying i/, and i/, to P to perform container replacements. P and P’ have the container
behavioral equivalence relation, denoted by P ~¢ P’, if and only if for any st, € S, in the form of

v =c.fe(vy,...,0m), ¥g and ¢, satisfy

Q=0 (1)
Yo € &, (c) ¥q € pe(0), n(T,q) =n(T",q) (2)
Yoy € &s,(c) Yoy € €5 (c), alloc(oy, sta1) A alloc(og, Staz) = Yalstar) = Ya(staz) (3)

where (Q,T) := apm(fe) and (Q', T7) := apm(Yc(ste)). (Pe, €e) and (psy, , €5¢,) are the program states
at the exit of P and before st,, respectively. The predicate alloc(o, st,) indicates the relation that o
is allocated by st,. 1y is defined as follows:

n(T.q)={t|q€ort).t €T} 4)

The intuition behind Definition 4.9 is straightforward. The constraints in Equations 1 and 2
assure that the returned value of a container method call in P’ is always the same as the one in
P, as the methods in P’ query and modify the concerned container properties in the same way as
the ones in P. Meanwhile, Equation 3 constrains the types of container objects manipulated by the
same container method call, assuring the program P’ is well-typed.

Obviously, we can explicitly examine the equations based on the abstract states to determine
the methods and types in the replacements. Specifically, we utilize Equations 1 and 2 to identify
possible methods for container method replacements (§ 5.2), and leverage Equation 3 to refine the
replacements in the synthesis (§ 5.3). Formally, we state Theorem 4.10 to justify that container
replacements assuring container behavioral equivalence finally guarantee behavioral equivalence.

THEOREM 4.10. Container behavioral equivalence relation is a behavioral equivalence relation, i.e.,
P~ P =>P=~P

ProoF. According to Definition 4.9, P’ only differs from P in terms of the container allocation
statements and container method calls. Therefore, we only need to prove that for each container
method call v = c.fo(v1, . . ., vy) in P and the corresponding call v = c.fé(vl, ..., Um)in P, we
have the equality relation [v](s) = [v"]|(s"), where f/, := Yc(stc). s and s” are the program states
after the container method calls in P and P’, respectively.

If not, we can find a control flow path [in P and I’ in P’ containing st. := v = c.fc(v1, ..., Upm)
and st; ;=0 = c.fc’,(vl, ..., Um), respectively, which are the first container method calls in [and I’
violating the equality relation. According to Equation 1, we have Q; = Qj, where (Q1, T1) := am(fc)
and (Q7, T)) := am(yc(st;)). Obviously, there exists a pair of container method calls located not
after st, and st/ in] and I, respectively, which induce different modifiers upon a container property
in Q. Denote the two method calls by st, and st,, which invoke g¢ and g;, respectively. Assume
that (Qz, Tz) := am(gce) and (Q3, T;) = am(gs). Then, we have

3q" € Q, n(T2,q") # n(Ty,q")

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 68. Publication date: April 2022.

68:12 Chengpeng Wang, Peisen Yao, Wensheng Tang, Qingkai Shi, and Charles Zhang

The method calls manipulate the container object o, of which the properties in Q are queried by st,
and st/ afterwards. According to the definition of p., we have Q C p.(0), thus we have

39" € pe(0), n(T2.q") # n(T5,q")

This contradicts with Equation 2. The theorem is proved. O

Theorem 4.10 enables us to guarantee the behavioral equivalence by examining the container
behavioral equivalence. For each container method call, we can identify its method candidates
which satisfy the constraints in Definition 4.9. Finally, we can select efficient container candidates
so that the replacements are likely to satisfy the complexity superiority.

4.3 Complexity Guidance

To achieve the optimization, we expect the new program to satisfy the complexity superiority.
Specifically, the synthesis algorithm should be aware of the time complexity of each container
method. To this end, we propose the method complexity specification (§ 4.3.1) and then define
container complexity superiority to provide the effective guidance for the synthesis (§ 4.3.2).

4.3.1 Method Complexity Specification. To depict time complexity of a container method in a
fine-grained manner, we define a family of time complexity functions 7 C to represent different
time complexities, which include (amortized) constant time complexity, (amortized) linear time
complexity, etc. The functions of amortized time complexity are introduced as symbols to distinguish
them from constant time complexity, linear time complexity, etc. Meanwhile, there exists an order
between several container methods even if they have the same time complexity function. For
example, the method LinkedHashMap.put has to maintain the indexes in a linked list to preserve
the insertion order, and consumes more time than the method HashMap.put. Based on 7 C, we can
formalize the method complexity specification as follows.

Definition 4.11. (Method Complexity Specification) The method complexity specification is a
function CS mapping a container method f¢ to its complexity score 6 - tc(n), indicating its time
complexity and a constant factor.

Example 4.12. The methods HashMap.put and LinkedHashMap.put are mapped to 6; - tc(n) and
0, - tc(n), respectively, where 0; < 0,. tc(n) is the function of amortized constant time complexity.
0; < 0, indicates that the method LinkedHashMap.put consumes more time than the method
HashMap.put.

Based on Definition 4.11, we can measure the total time complexity score of container method
calls by a function of n. Then we can naturally compare the order of the complexity scores of
container method calls in two programs by comparing the coefficients of tc;(n), where tc;(n) is the
time complexity function occurring in the complexity scores.

4.3.2 Container Complexity Superiority. Although the method complexity specification provides
an abstraction of the efficiency of each container method, we are still unaware of the frequency
of container method calls, and estimating the time complexity for a general program is far from
practical. To establish effective guidance for synthesis, we define the container complexity
superiority formally as the heuristic criteria of the complexity superiority.

Definition 4.13. (Container Complexity Superiority) Let P’ be the program obtained by applying
¥ and . to P. P’ has the container complexity superiority over P if and only if for any st, € S,
and o allocated by st,, we have

DL CSWelst) < Y. CS(fo) (5)

ste€Sc(0) stc€Sc(0)

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 68. Publication date: April 2022.

Complexity-Guided Container Replacement Synthesis 68:13

where f¢ is the container method in st., and S.(0) contains the container method calls that
manipulate o in an execution of P, i.e.,

Sc(o) = {st. | st :=v=c.fe(v1,...,vm) € Sc,0 € €,(c)} (6)
£5¢, indicates the points-to facts before the statement st..

Example 4.14. Assume that we have specified the method complexity specifications as follows:
CS(ArrayList.add) = tc(n) CS(ArrayList.contains) = n
CS(HashSet.add) = 2 - tc(n) CS(HashSet.contains) = 1

te(n) is the time complexity function of amortized constant complexity. In Figure 2, the total time
complexity score of the container method calls manipulating o, is 2n + tc(n), After replacing it
with a HashSet object, the score is 2 + 2 - tc(n) < 2n + 2 - tc(n), showing the container complexity
superiority of the program after the replacements.

Checking the complexity superiority requires precise reasoning of program complexity. However,
deriving a tight bound of program complexity is stunningly difficult [Wilhelm et al. 2008] and
far from practical for a real-world program [Gulwani et al. 2009a; Xie et al. 2016], especially for
programs involving sophisticated manipulations of data structures [Fiedor et al. 2018; Gulwani
et al. 2009¢; Lu et al. 2021; Srikanth et al. 2017]. Although the container complexity superiority does
not imply the complexity superiority, it provides the effective guidance to find the opportunity of
synthesizing the replacements to improve program efficiency, as evidenced by our evaluation in § 7.

5 SYNTHESIS ALGORITHM

This section presents our synthesis algorithm that achieves the goals described in § 4.2 and § 4.3.
It takes as inputs the source code of a program P and the container method specifications. The
algorithm finally computes the container replacement mappings ¥, and ¢, based on which we can
obtain a new program P’. As shown in § 4.2 and § 4.3, the container behavioral equivalence and
the container complexity superiority pose sophisticated constraints for the container replacement
mappings ¥, and /.. To satisfy all the constraints, our synthesis algorithm works with three stages
as follows:

o To understand the intention of container usage, we present the container property analysis to
determine which container-property queries occur upon a container object (§ 5.1).

e To assure P’ queries and modifies container properties in the same way as P, we identify the
method candidates for a container method call based on Equations 1 and 2 (§ 5.2).

o A synthesizer selects the methods from the method candidates with lowest time complexity to
guarantee the container complexity superiority. A verifier performs type checking by examining
whether Equation 3 holds to assure the container behavioral equivalence. If the type checking
fails, the synthesizer refines the synthesized types and methods in the consequent rounds (§ 5.3).

We also state the soundness and complexity of the synthesis theoretically (§ 5.4). The soundness

theorem guarantees that the new program P’ must be behaviorally equivalent to P. For clarity, we
use the program in Figure 2 to explain each stage of our approach throughout this section.

5.1 Container Property Analysis

According to Definition 4.1, we can compute container-property queries to reveal the intention of
container usage. Suppose we have obtained points-to fact ¢ at each program location based on an
off-the-shelf points-to analysis. Using the method semantic specification, we can easily compute
the property-query fact p at each program location. Finally, we obtain the property-query fact p,
at the exit of the program, indicating all the container-property queries occurring in the program.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 68. Publication date: April 2022.

68:14 Chengpeng Wang, Peisen Yao, Wensheng Tang, Qingkai Shi, and Charles Zhang

prSi~pr prESywp’ prS~wp p=p
P F S8, ~w p pE fix(S) ~ p
(SEQUENCING) (Frx-I)
prSi~pi pr Sy p prS~pr p#py
p’ = pilo— pi(o) U pa(0) | 0 € O] pz2 = pilo— plo) U pi(o) |0 € O]
p + if (e) then S; else S, ~» p’ pa b fix(S) w p’
(BRANCH) p+ fix(S) ~ p’
(Frx-II)
Q. 7T) = am(fe)
p'=plor plo)uQ|oeelc)] p+ fix(8) ~ p’
prou=c.felvy,...,vp) » p’ p +while (¢) do S od > p’
(CoNTAINERCALL) (Loor)

Fig. 6. Abstract transformers in the container property analysis

Figure 6 defines the abstract transformers of program statements. Specifically, we should handle
four program constructs, including a sequencing, a branch, a container method call, and a loop.

o The rule of sequencing is simple, in which the transformer is exactly the composition of the
transformers of its parts.

e For a branch, the transformer merges the container-property queries occurring upon a container
object along two paths.

e The rule CONTAINERCALL relies on the points-to fact ¢ before the statement to identify the
container object o manipulated by the container method call. Q indicates the container-property
queries induced by f¢. To update p, we merge p(o) with Q directly to show that the container-
property queries in Q occur upon o.

e To compute the container-property queries in a loop, we need to calculate the fixed point by
applying the transformer of the loop body iteratively. Due to the finite sizes of Q and O, the
fixed point must be reached after applying the rule Fix-II finite times.

Example 5.1. Consider the ArrayList object 017 in Figure 2. According to the method semantic
specification, we have &(r) = {011} and p(01;) = @ before line 23. The method ArrayList.contains
queries the container property isVal(v), i.e., the value-ownership of 0;;. By applying the rule Con-
TAINERCALL, we have p’(011) = {q}, where q(s, ¢) = isVal(v), indicating that the value-ownership
query has occurred upon o0y, after line 23. Similarly, 04, is also manipulated by the container method
call at line 38, and we can obtain p.(011) = {q} at the exit of the program, which means that only
the value-ownership query occurs upon o1;.

Our container property analysis reasons how container objects are utilized in a flow-sensitive
manner. Crucially, p, over-approximates the container-property queries occurring upon container
objects, and provides the sufficient guidance for method candidate identification to guarantee the
container behavioral equivalence. It is worth noting that pointer analysis affects the precision of
the container property analysis. When the points-to facts are imprecise, the container property
analysis can discover that a container object o is manipulated by a container method call, while o
is not pointed by ¢ in any concrete execution. Therefore, p, can contain the container-property
queries which do not occur in any execution. We will quantify the effect of pointer analysis in the
evaluation to show that its imprecision degrades the effectiveness of the replacements.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 68. Publication date: April 2022.

Complexity-Guided Container Replacement Synthesis 68:15

Algorithm 1: Identifying method candidates.

Input: P: A container-manipulating program; «: Method semantic specification;
Output: 1/70: Method candidate mapping;

1 S;, S; < getSkeleton(P);

2 p. « getQueryFact(P);

3 Yo — [ste > @ | ste € S.;

4 foreachst, :=v =c.fe(vy,...,0m) €S, do

5 €5t < getPTFact(P, st.);

6 foreach f/ € M do

7 L if isEquivalep\t (fe, fC’, Pes Est.» Apm) then

L I;C(StC) « I//C(Stc) Ufé;

8

9 return y;

5.2 Method Candidate Identification

To guarantee the behavioral equivalence, we have to determine the container methods preserving
the container behavioral equivalence. Specifically, the constraints in Equations 1 and 2 should be
satisfied so that the concerned container properties can be queried and modified int the same way
as the original program. Formally, we define the method candidate as follows.

Definition 5.2. (Method Candidate) Given a container method call st. € S, a container method
f¢ € M is amethod candidate of st if and only if it satisfies Equations 1 and 2.

Essentially, we should compute the method candidate mapping v,’b\c : S, — 2M to indicate the
method candidates of a container method call. At a high level, we can leverage the method semantic
specification a p(and the property-query fact p, at the exit to identify the method candidates.

Algorithm 1 shows the procedure of identifying method candidates. It first utilizes the points-to
fact &;;, to identify the container objects manipulated by the container method call st.. getQueryFact
returns the property-query fact p, at the exit of P, and isEquivalent checks whether Equations 1 and 2
hold for a container method call st.. Utilizing the method semantic specification a s, isEquivalent
enumerates each container object o manipulated by st and checks whether the method f/ queries
and modifies the concerned container properties of o in the same way as the original method f¢ in
P. Finally, Algorithm 1 collects the method candidates for each container method call.

Example 5.3. Assume that C = {ArrayList, LinkedList, HashSet}. Consider the object 011 in
Figure 2. Utilizing the container property analysis, we obtain p.(011) = g, where g(s, ¢) = isVal(v).
The container method calls st.@lz3 and st.@I53 manipulate o7 at lines 23 and 38, respectively. The
methods HashSet.contains and ArrayList.contains both induce the value-ownership query and do
not induce any container-property modifier, so Equations 1 and 2 both hold. Similarly, we have

lzc(stc@lgg) = lzc(stc@l%) = {ArrayList.contains, LinkedList.contains, HashSet.contains}

Recall that Theorem 4.10 states that container behavioral equivalence implies the behavioral
equivalence. According to Algorithm 1, Equations 1 and 2 must hold if we select the method for a
container method call st. from its method candidate set {ﬁ; (stc). Next, we can assure the container
behavioral equivalence as long as the replacements satisfy Equation 3, i.e., the new program P’ is
well-typed. Therefore, we can obtain a well-typed program P’ after the container replacements,
which is behaviorally equivalent to P.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 68. Publication date: April 2022.

68:16 Chengpeng Wang, Peisen Yao, Wensheng Tang, Qingkai Shi, and Charles Zhang

5.3 Container Replacement Synthesis

To improve program efficiency, we should select the methods from xzc(stc) for each container
method call st, to satisfy the container complexity superiority in Definition 4.13. Besides, we have
to conduct type checking by examining Equation 3 to assure the container behavioral equivalence.
To meet the two requirements, we instantiate a counterexample-guided inductive synthesis
(CEGIS) paradigm [Cheung et al. 2013; Gulwani et al. 2011; Solar-Lezama et al. 2008; Yaghmazadeh
et al. 2017]. Algorithm 2 shows the procedure of container replacement synthesis. At a high level,
it processes a container allocation statement st, in a round and finally synthesizes the container
replacement mappings ¥/, and /.. Specifically, each round contains the following two steps:

o Guess replacements: The synthesizer selects the most efficient methods from the method candidates
for the container method calls manipulating o, where o is allocated by st,.

o Type checking: The verifier performs type checking by examining Equation 3. The container
allocation statements are reprocessed in the consequent rounds if they violate Equation 3.
Initially, Algorithm 2 sets the types and methods to L in ¢, and ¢, to indicate undefined types

and methods, respectively. Besides, it introduces the mapping x’ﬁ\a to maintain feasible types for

container allocation statements, and all the types are regarded as feasible initially. Each round of

Algorithm 2 synthesizes the replacements for the container object o allocated by st,. For clarity, we

introduce the function callSites to obtain the container method calls manipulating o.

Next, to illustrate each step, we use the object 01; in Figure 2 as an example. Suppose that
st,@ly7 has been processed before st,@!;; in the CEGIS loop, where st,@!;7 and st,@I;; allocate
o017 and oq1, respectively. At the beginning of the round, we have ,(st,@I;7) = LinkedList and
HashSet ¢ {ﬁ\a(sta@lw), as the value-ownership of 047 is necessary in the program, and LinkedList
supports more efficient insertions than ArrayList by avoiding memory reallocation.

Guess Replacements. The synthesizer enumerates each feasible container type 7’ € Ja(sta)
and utilizes getMinCS to find the method candidate supported by 7’ with the lowest complexity
(lines 11-14). If ’ does not support any method candidate, getMinCS returns a symbolic method
T with MAX_CS as its time complexity score, and 7’ is removed from 17/; (stq), indicating that 7’
is not the feasible type of st,. Finally, the synthesizer selects the container type with the smallest
sum of time complexity scores (lines 15-19).

Example 5.4. The synthesizer selects the methods HashSet.contains and HashSet.add to manipu-
late 011. Because the sum of their complexity scores is smaller than that of any other selection, the
synthesizer enforces /,(st,@I;;) = HashSet.

Type Checking. The verifier performs type checking by examining whether Equation 3 holds
(lines 25-26). If type checking fails, it adds the allocation statements to the set of counterexamples
CE, which are refined by being reprocessed in the consequent rounds (lines 27-31). Moreover, we
constrain that the counterexamples have the same set of feasible container types (line 29), pruning
off the type selections causing the failure of type checking in the consequent rounds.

Example 5.5. Before type checking, we have ,(st,@l;7) = LinkedList and ,(st,@l;1) =
HashSet. The container objects 01; and 017 are both manipulated by the container method call at
line 23, violating the constraint in Equation 3, so they are refined and reprocessed in the consequent
rounds. At the end of this round, we have HashSet ¢ Ja(sta@lll), as HashSet is not the feasible
container type for st,@I,7. Furthermore, their feasible type LinkedList is selected in the consequent
rounds, finally passing type checking.

Particularly, the verifier updates a mapping o to show the relation between st, and st/ that
the two allocated objects can be manipulated by the same container method call (lines 22-24).

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 68. Publication date: April 2022.

Complexity-Guided Container Replacement Synthesis 68:17

Algorithm 2: Container replacement synthesis.

Input: P: A program; 17/\6: Method candidate mapping; CS: Method complexity specification;
Output: i/, /.: Container replacement mappings;

1 S, S, « getSkeleton(P);

2 g, ¢ «— getlOriginalUsage(P);

3 Py [stg > L|sty € Sal; e « [ste > L |st. € Scl;

40— [stago> D | sta € Sal; Ya — [sta > C | sta € Sal;

5 foreach st, € S, do

6 /* Synthesizer: Guess replacements */

7 min «— MAX CS;

8 Sa — 8a\ {sta};

9 foreach 7’ € l}\a(sta) do
10 Yl — Yo
11 foreach st. € callSites(st,) do
12 Y!(ste) — getMinCS(Ye(ste) N method(r’), CS);
13 if ¥/(st;) = T then
1 | Valsta) = Valsta) \ {z'};
15 cur « getCSSum(callSites(st,), ¥/, CS);
16 if cur < min then
17 min <« cur;
18 Ve — Ul
19 | Yalsta) < 75
20 a
21 /* Verifier: Type checking *x/
22 foreach st € S, do

24 L o(st]) « a(st}) U {sta};

25 CE « {st} | st), € a(sta), Va(st)) # Va(sta), Ya(st)) # L} U {sta};
26 if |CE| > 1 then

23 L if callSites(st,) N callSites(st)) # @ then

27 foreach st/ € CE do

28 Sq — S U {st)};

29 Va(stg) < Nsiyeck Yalsty);

30 Ya(sty) « L

31 Ve « [stc — L | st. € callSites(st))];

32 return ¥, , §;

Intuitively, o maintains the constraints for type checking, which are refined and utilized inductively
in each round. To improve the efficiency of the synthesis, we use several data structures to cache
the relationships frequently utilized in the synthesis. For example, we memorize the set of container
method calls manipulating the container object allocated by a specific allocation statement so that
we can get the value of callSites at lines 15, 23, and 31 without unnecessary recomputation.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 68. Publication date: April 2022.

68:18 Chengpeng Wang, Peisen Yao, Wensheng Tang, Qingkai Shi, and Charles Zhang

Algorithm 2 synthesizes the container replacements inductively to guarantee the container
behavioral equivalence and the container complexity superiority. Specifically, the counterexample-
guided refinement assures that container behavioral equivalence must hold in the synthesis. Besides,
the selected candidates have the lowest complexity among the method candidates, which assures
the container complexity superiority. Even if type checking fails, the trivial selection, i.e., setting
all the types and methods to the original ones, is still permissive in the consequent rounds, so
the sum of the time complexity scores can not be increased. Obviously, the method complexity
specifications determine the complexity guidance and further affect the synthesized replacements.
We will configure different specifications to quantify the influence and demonstrate the advantages
of the form of our method complexity specifications in Definition 4.11.

5.4 Summary

Based on the sound points-to facts, our approach synthesizes the container replacements efficiently,
which do not change the program semantics. We formulate two theorems to state the soundness
and the complexity of Algorithm 2.

THEOREM 5.6. (Soundness Theorem) , and . provide sound container replacements, i.e., the
program P’ obtained by applying ¥, and . for replacements has behavioral equivalence relation with
the original program P.

Proor. Based on Theorem 4.10, we only need to prove that for any st. € S¢ and f/ € l;c(stc),
f¢ and fc satisty the three equations in Definition 4.9, where fc is the container method invoked
in st. In Algorithm 1, isEquivalent checks whether Equations 1 and 2 are satisfied. In Algorithm 2,
the verifier performs type checking and examines whether Equation 3 holds. Given sound points-
to facts, Equation 3 must hold for the synthesized container replacement mappings. Thus, the
soundness of the synthesis totally relies on the soundness of the container property analysis.

The off-the-shelf points-to analysis provides a sound result ¢ for the abstract transformers in
Figure 6. Consider an arbitrary container method call v = c.f¢(vy, ..., vn). For any concrete
execution of the program, the container object manipulated by the method call can be abstracted
by an abstract container object o € €(c). We use a set Q to denote the set of the container-property
queries induced by the call, i.e., (Q,T) := am(fe)-

The rule CONTAINERCALL adds all the container-property queries in Q to p(0), which is a subset
of p.(0). Thus, the container-property queries occurring on the concrete container object must be
included by pe(0), which means the rule CONTAINERCALL defines a sound abstract transformer for
container method calls. Similarly, we can prove the other three rules, i.e., the rules SEQUENCING,
BrancH and Loop, define sound abstract transformers. Finally, the soundness of container property
analysis assures the soundness of container replacements. O

THEOREM 5.7. (Complexity of Synthesis) Assume |S,;| < |S¢|. The time complexity of Algorithm 2
is O(ICI* - IM] - |Sal - IS

Proor. First, consider the guessing process, which corresponds to the steps from line 9 to line
19. The upper bound of the iteration count from line 9 to line 19 is

SupstaESal‘pa(Sta)l = O(|C|)
Similarly, the upper bound of the iteration count from line 11 to line 14 is O(|S,|), as callSites(st,) C
S.. Notice that the function getMinCS has to find the minimal value from at most | M| unordered
elements, so it runs in O(|M|). The function getCSSum at line 15 also runs in O(|S.|). In each
round, the synthesizer guesses the replacements in

O(ICI - (IScl - IM] +Sc])) = O(IC| - S| - IMI)

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 68. Publication date: April 2022.

