Bounded-Exhaustive Subspace Diversification
for SMT Solver Testing

Junda Zheng and Peisen Yao=

The State Key Laboratory of Blockchain and Data Security, Zhejiang University
{zhengjd04, pyaoaa}@zju.edu.cn

Abstract. SMT solvers form critical infrastructure for many verifica-
tion and program analysis systems. Recent fuzzing efforts since 2019
have significantly improved solver robustness, yet these approaches of-
ten fall short of systematically probing the diverse semantic subspaces
within a formula’s satisfiability domain. This paper introduces subspace
diversification, which systematically partitions the solution space of seed
formulas to guide solvers into exploring different behavioral regions. We
instantiate the idea using three general, bounded, and efficient muta-
tion strategies that confine the space with cubes, numerical domains,
and quantifiers. An extensive evaluation on Z3 and CVC4 demonstrates
the effectiveness of our implementation, Canary, which uncovered 108
confirmed bugs across multiple theories and bug types.

1 Introduction

Satisfiability Modulo Theories (SMT) solvers determine the satisfiability of for-
mulas over first-order theories, such as integers, reals, bit-vectors, and strings.
SMT solvers have been widely used in various techniques such as symbolic ex-
ecution [IH3], program verification [4H6], program synthesis [7] [§], program re-
pair [9, [10], refinement types [11, 12], among others. SMT solvers have also been
successfully deployed in the industry to address practical software engineering
programs, such as finding zero-day software vulnerabilities [13], verifying the
safety of radiotherapy machines [I4], and enforcing the access control policies of
Amazon Web Services [I5], [16].

Despite substantial advances, modern SMT solvers remain susceptible to
bugs [I7H20], such as soundness issues, invalid models, and runtime crashes.
These faults compromise the reliability of tools that rely on SMT solvers, particu-
larly in safety-critical software systems. Ensuring the correctness of these solvers
is a persistent challenge, particularly in developing effective testing methodolo-
gies. In particular, it is challenging to generate test formulas that thoroughly
exercise the solver’s diverse components, such as preprocessing routines, general
frameworks, and theory-specific engines.

Existing approaches to test formula generation generally fall into two cate-
gories: generative and mutational. Generative approaches create formulas from
scratch—typically by randomly assembling syntactically valid expressions ac-
cording to target theory grammars [21], I8 22, 23]—and can produce many

variants. However, it is often hard to steer them toward testing specific solver
features. In contrast, mutational approaches systematically transform existing
formulas [24], 20, 17, 19 25]. By starting from known “seed” formulas, these
techniques generate small changes that preserve much of the original structure
while exploring new solver behaviors.

Yet, even sophisticated mutation strategies tend to focus on localized ed-
its—altering a constraint, flipping a logical operator, or adding redundant terms.
Although such transformations can explore a range of syntactic variations, they
often fail to expose deeper semantic differences in solver behavior. In particu-
lar, they lack mechanisms for deliberately probing distinct logical regions within
a formula’s satisfiability space. As a result, significant portions of the solver’s
decision-making paths may remain untested, leaving certain bugs hidden.

This paper presents a novel mutational testing approach for SMT solvers,
termed subspace diversification. The key insight is that, for a given formula ¢,
many SMT solvers exhibit deterministic search behaviors that focus on nar-
row regions of the solution space, potentially overlooking significant unexplored
areas. These underexamined sub-regions may conceal latent bugs that evade de-
tection by conventional tests. Subspace diversification addresses this limitation
by systematically partitioning the solution space of a formula ¢ using a set of
constraints My, ..., M,,, where each M; restricts ¢ to a distinct subspace of the
solution space. By guiding the solver to explore these regions, our approach can
potentially expose unexpected behaviors or faults.

We evaluate Canary on two widely used SMT solvers—Z73 and CVC4—and
demonstrate its effectiveness by uncovering 108 confirmed bugs, many of which
have since been fixed. These bugs span multiple theories and encompass criti-
cal issues, including soundness violations, invalid model generation, and crashes.
Our evaluation also shows that Canary can help improve code coverage and
bug detection efficiency of baseline fuzzers. Furthermore, our head-to-head com-
parison with state-of-the-art fuzzers (HistFuzz and Yinyang) demonstrates that
Canary can discover bugs that are missed by existing techniques. When inte-
grated with these baseline fuzzers, Canary improves bug detection across all
categories, showing that subspace diversification is complementary to existing
approaches and can uncover deeper semantic errors.

In summary, our contributions are as follows:

— We introduce subspace diversification, a novel mutation-based testing method-
ology for exploring under-tested regions of SMT solver behavior.

— We instantiate the methodology by proposing three mutation strategies fo-
cused on cubes, numerical domains, and quantifiers.

2 Overview

SMT-LIB2 Language. SMT extends the classical Boolean satisfiability (SAT)
problem by incorporating reasoning over first-order theories, such as linear in-
teger arithmetic, real numbers, and strings. The SMT-LIB2 format has become
the de facto standard for expressing SMT constraints, offering a unified language

for defining variables, asserting conditions, and invoking satisfiability checks. For
instance, the following SMT-LIB2 code snippet defines two integer variables and
asserts a constraint that both must satisfy:

(set—logic QF_LIA)
(declare—const x Int)
(declare—const y Int)

(assert (and (> x 1) (< y 3)))
(check—sat)

Tk W N~

2.1 SMT Formula Generation

The development of rigorous test formulas is central to evaluating the correctness
and performance of SMT solvers. These formulas aim to explore solver behavior
under diverse and challenging conditions. Two prevailing methodologies exist in
the literature: generative and mutational approaches.

Generative Approach. Generative methods produce entirely new formulas
from scratch, often guided by the grammar and semantics of the target logic.
Several notable strategies include:

— FuzzSMT [21] is the first, grammar-based blackbox fuzzing tool developed
to validate SMT solvers.

— StringFzz [22] uses grammar-based generation to construct formulas tailored
to specific theories systematically.

— BanditFuzz [24] uses reinforcement learning-based generation, which adapts
its generation policy based on feedback from solver performance.

— Falcon [23] focuses on mutating solver configuration options using a feedback-
driven mechanism to test solver behaviors.

— ET [26] is a grammar-based enumerator for systematically validating the
correctness and performance of SMT solvers.

Mutational Approach. Mutational approaches modify existing seed formulas
to generate new test inputs. This category is further divided based on the use of
oracles that preserve or evaluate the satisfiability status.

Oracle-Guided Mutations: These techniques rely on known solver outputs or
structural transformations that maintain satisfiability. For instance:

— Bugariu and Miiller [I8] presents formula transformations that preserve sat-
isfiability and create increasingly complex formulas to test string solvers.

— Storm [19] generates satisfiable formulas that are structurally different from
the original seeds.

— Yiyang [20] combines formulas with identical satisfiability outcomes to create
new variants.

— Sparrow [25]: generates formulas using approximation strategies, enabling
the construction of test oracles.

— Diver [27]: uses random mutations and assignment-based oracles to test SMT
solvers, focusing on satisfiable formulas.

Oracle-Less Mutations: These methods operate without oracle feedback, often
using syntactic heuristics or probabilistic models:

— OpFuzz [20] uses a type-aware operator mutation technique targeting first-
order logic formulas.

— HistFuzz [28] leverages historical bug-triggering inputs. The method extracts
skeletons (core structures) and atomic formulas from past bug reports, then
uses association rule mining to guide the generation of new test formulas.

Limitations. Although these techniques can explore nuanced input variations,
they often fall short in systematically directing solvers toward semantically
distinct regions within a seed formula’s satisfiability space. SMT solvers typ-
ically employ deterministic search strategies that concentrate on narrow solu-
tion regions, neglecting potentially significant unexplored areas. Mutation-based
approaches may generate syntactically different formulas without challenging
solvers to navigate fundamentally different search spaces. As a result, substan-
tial portions of a solver’s decision space may remain untested, allowing subtle
bugs to persist undetected.

2.2 Subspace Diversification

To bridge this gap, we propose a new mutation strategy called subspace diver-
sification. Rather than relying on random edits or broad syntactic changes, our
approach systematically explores unexplored logical sub-regions within a base
formula. The central idea is rooted in the observation that SMT solvers often
follow deterministic paths during satisfiability checking. As a result, large por-
tions of the formula’s solution space may remain unvisited.

Subspace diversification aims to expose these latent execution paths by selec-
tively constraining or activating specific subformulas. This targeted perturbation
increases the likelihood of triggering divergent solver behaviors.

To illustrate the approach, consider the following seed formula, which we use
for triggering a confirmed bug in CVC4:

(set—logic QF_NIA)

(declare—const a Int)

(declare—const b Int)

(declare—const ¢ Int)

(declare—const d Bool)

(declare—const e Int)

(assert (or (= (* (+ 0 0 e 0 888) ¢ b a) 0) d))
(check—sat)

0~ O ULk Wi

This formula is satisfiable if either disjunct holds. After we replace “check-
sat” with “(check-sat-assuming (d))”, CVC4 can solve the formula instantly.
However, if we replace “check-sat” with “(check-sat-assuming ((= (* (+ 0 0
e 0 888) c b a) 0)))”, CVC4 experiences significant performance degradation.
Both cases correspond to distinct branches of the disjunction, yet they elicit
dramatically different solver behaviors.

The discrepancy was traced to a bug in the branching heuristic of CVCA4.
The developers acknowledged the issue and subsequently fixed it. This example
showcases the importance of systematically probing alternative semantic paths
within a formula, an objective directly addressed by our work.

3 Approach

This section presents our methodology for systematically uncovering bugs in
SMT solvers by decomposing the original formula into logically distinct sub-
spaces. We begin by formalizing the solution space partitioning problem (§ .
We then describe three complementary strategies for generating sub-formulas
that explore these subspaces (§ . Finally, we describe how our method in-
tegrates with a differential testing workflow to identify and categorize solver

inconsistencies (§ [3.3)).

3.1 Solution Space Partition

Given an SMT formula ¢, its solution space consists of all interpretations (or
models) under which ¢ evaluates to true. We formalize this as follows:

Definition 1. (Solution Space) The solution space S(p) of a formula ¢ com-
prises all interpretations under which ¢ evaluates to true:

Slp)={1 |1+ }

Ezample 1. Let ¢ = pV q, where p and ¢ are Boolean variables. The formula
evaluates to true under the following interpretations:

S(pVq) ={{p+ true, ¢ — false},
{p— false, q— true},
{p > true, q — true}}

Modern SMT solvers typically follow deterministic search trajectories when
exploring solution spacesﬂ While this determinism benefits reproducibility and
robustness, it creates a critical limitation: during any single execution, large
portions of the solution space may remain entirely unexplored.

1 'We can set the random seed and other parameters to diversify the runtime behavior
to a certain degree.

To address this, we design a method to produce syntactic mutations of ¢
that apply targeted constraints, effectively dividing the solution space into mul-
tiple, non-overlapping sub-regions. Each resulting sub-formula explores a distinct
portion of S(p), encouraging solvers to exercise different decision paths.

Problem Statement. Given a formula ¢, our objective is to generate a collec-
tion of formulas ¢1, ..., @, such that:

— Each ; restricts ¢ to a specific segment of its solution space.
— Each sub-formula ¢, preserves the syntactic and semantic properties neces-
sary for meaningful SMT solver testing.

The key challenge is how to construct informative sub-formulas that prompt
diverse solver behavior, without relying on exhaustive enumeration, which is
infeasible for formulas with combinatorial or infinite solution spaces, common in
theories involving integers, reals, arrays, or strings.

3.2 Partition Strategies

We introduce three strategies for constructing sub-formulas that partition the so-
lution space of a given formula : (i) numerical domain constraints, (ii) Boolean
cubes, and (iii) quantifier-based transformations. Each strategy is designed to
satisfy the following criteria:

— Diversification — Each strategy helps target distinct logical regions of the
solution space.

— Generality — The strategies should be broadly applicable.

— Efficiency — The mutations should be fast to enable testing throughput.

Partition via Numerical Domains. First, for formulas over numeric theo-
ries, we partition the solution space by constraining variables to lie within spe-
cific abstract domains [29, [30]. This strategy draws on techniques from abstract
interpretation, using domains such as intervals, zones, and octagons to define
semantically meaningful subregions.

Ezample 2. For an integer formula (z,y), we can partition its solution space
into p Az > a and pAx < a, where a represents a randomly-generated constant.

For arithmetic-heavy theories, such as nonlinear arithmetic and floating-point
logic, solver behavior is often sensitive to the magnitude of numeric values. Parti-
tioning by value range may expose corner cases in arithmetic reasoning, overflow
handling, or rounding behavior.

Besides, this approach generalizes naturally to multiple variables and more
expressive domains. For instance, we can partition using relational constraints
such as z—y < ¢ (zones) or z+y < cand z—y < ¢ (octagons). These abstractions
allow us to define subregions that are both expressive and tractable.

Partition via Cubes. Second, inspired by cube-and-conquer approaches in
parallel SAT solving [31}, [32], we define Boolean cubes as conjunctions of literals
(atoms or their negations) to form partitions.

Definition 2. (Partition Cube) Given a formula ¢ and a set S of partition
predicates, a k-dimensional partition cube C' is defined as the conjunction l; N\
-+« Nlg, where each l; is either a predicate or the negation of a predicate p € S.

Ezample 3. Consider the formula ¢ = pA (¢V —s) A (rV s), with atoms p, g, r, s.
Possible cubes include:

— 1-dimensional: p, —p, 7;
— 2-dimensional: p A q, p A —s;
— 3-dimensional: pAgAr, p A —gA —s.

By forcing the solver to commit to specific cubes, we can guide it toward
decision paths that may otherwise remain unexplored. Cubes can be constructed
over both propositional and theory-level atoms. For instance, in string logic,
predicates may include x = “alice” or z = str.++(x,y). In array logic, predicates
may include a[i] = v or select(a,i) = v. Because cube construction operates over
literals, it generalizes across theories without requiring theory-specific reasoning.

This strategy offers two key advantages. First, it provides bounded combi-
natorial complexity: for k predicates, there are at most 2 cubes. This allows
controlled exploration of the solution space by adjusting k. Second, it is syn-
tactically lightweight: cube construction requires only syntactic analysis of ¢,
without invoking expensive semantic reasoning.

Partition via Quantifiers. Finally, quantifiers significantly enhance the ex-
pressive power of SMT formulas and are essential for modeling systems with
variable scope or data abstraction. However, supporting quantifiers introduces
significant complexity into SMT solving and is often a source of incompleteness
or performance degradation, such as incomplete instantiation strategies that
miss relevant ground terms and improper handling of quantifier alternation or
variable shadowing.

To further diversify test instances, we apply transformations that inject quan-
tifiers into seed formulas.

Ezample 4. Given the quantifier-free formula ¢(x,y) = = +y < 1, we may
construct quantified variants as follows:

— Universal quantification: Vz.¢(z, z);
— Existential quantification: 3z.¢(z, y);
— Quantifier alternation: Vz.3w.Vv.p(z,w, v).

Notably, this strategy can also indirectly stress the quantifier-free reason-
ing engines, since quantifier-handling algorithms, such as MBQI (model-based
quantifier instantiation) [33] and E-matching [34], typically employ quantifier-
free decision procedures as fundamental subroutines.

3.3 Testing Workflows

Our testing framework utilizes a multi-strategy partitioning scheme, combined
with differential testing, to identify discrepancies and crashes in SMT solvers. By

Algorithm 1: Search Space Partition-Based Differential Testing

Input: solverl, solver2: SMT solvers under test
Input: &: a set of input seed formulas
Input: N: number of mutations per seed formula
Output: bugs: set of bug-triggering formulas

1 bugs + 0;

2 foreach ¢ € ¢ do

3 if ¢ is unsat then
4 L P — T /* negation an unsatisfiable seed */
5 fori=1to N do
6 s < randomly select a mutation strategy;
7 1) < apply the strategy to ;
8 rl < solverl.solve(v);
9 r2 + solver2.solve(v);
10 if r1 = crash or r2 = crash or r1 # r2 then
11 L bugs < bugs U {¢};

12 return bugs

strategies
————-
| cube | —> ?
————=" sub-formulas Z 5 correctness bugs
| —D | numerical | D>
| domain |
————— -
seed formula —————n CvGs > O
ifi |
Il _T‘f lir _) crashbugs
mutation engines SMT solver

Fig. 1: Overall workflow of Canary

generating logically distinct sub-formulas from an original formula ¢, we drive
solvers into varied execution paths.

Overall Workflow. Algorithm [I] presents the complete testing pipeline. The al-
gorithm accepts two SMT solvers, a set of seed formulas, and a mutation count
per seed. For each seed formula, it first checks satisfiability; if the formula is un-
satisfiable, it is negated to ensure a satisfiable starting point. Given a satisfiable
seed ¢, the algorithm generates N test cases by applying randomly selected mu-
tation strategies. Each mutation yields a variant formula v, which is evaluated
by both solvers. A discrepancy—either a crash or a disagreement in satisfiability
results—signals a potential bug.

It is worth noting that while the quantifier partition strategy can be applied
to unsatisfiable seeds, the current implementation focuses on satisfiable formulas
by negating unsatisfiable seeds to align with the other mutation strategies.

Bug Categorization. For each subspace v, the workflow performs differential
testing, comparing the results of multiple SMT solvers. This involves running v
across all solvers and checking for:

— Correctness bugs: Cases where solvers disagree on the satisfiability of ¢ (e.g.,
one returns SAT while another returns UNSAT).

— Crash bugs: Instances where a solver terminates unexpectedly due to internal
errors or resource exhaustion.

Any sub-formula that triggers a crash or disagreement is added to the can-
didate bug set, denoted as bugs in Algorithm [I] To streamline debugging and
facilitate triage, we apply automated formula minimization tools such as ddSMT.
Crashing instances are grouped by failure trace (e.g., assertion location or mem-
ory errors), while correctness bugs are categorized and reported to developers
by theory (e.g., linear arithmetic, strings).

While our approach is inspired by the idea of bounded-exhaustive testing,
our implementation does not attempt to exhaustively enumerate all possible
subspaces. Instead, we sample a representative subset of partitions under a given
resource budget to strike a balance between coverage and efficiency.

4 Evaluation

This section presents a comprehensive assessment of Canary, aiming to answer
the following research questions:

— RQ1: How effective is Canary in uncovering previously unknown bugs in
state-of-the-art SMT solvers (§ [4.1))?

— RQ2: How does Canary impact code coverage, and can it enhance the effec-
tiveness of existing SMT fuzzers (§ ?

— RQ3: Can Canary detect bugs effectively compared to existing fuzzers (§ ?

Tested Solvers. We have selected Z3 and CVC4, the two most popular SMT
solvers, for the experimental evaluation because they are popular and widely
used in academia and industry, support most of the SMT-LIB2 theories [35],
and have been extensively tested by previous efforts [21], 221 [17] 20] [19] 24] [23].
We primarily focus on the solvers’ default modes. For CVC4, we enable options
such as produce-models, incremental, and strings-exp to support all the seed
formulas. We use the check-models option for CVC4 and model.validate=true
for 73 to detect invalid model bugs. Additionally, we test a new SMT core of Z3,
which can be activated via the options tactic.default_tactic=smt sat.euf=true.

Baselines. We compare Canary against three state-of-the-art and mutational
SMT fuzzing techniques, including HistFuzz [28] and Yinyang [20].
Environment. All experiments are conducted on a Linux workstation equipped
with an 80-core Intel(R) Xeon(R) 2.2 GHz processor and 256 GB of RAM. We
compile Z3 and CVC4 using GCC 5.4.0, with assertions and AddressSanitizer [36]
enabled. We use Geov [37] to measure the code coverage.

10

4.1 Analysis of the Discovered Bugs

This section summarizes the bugs identified during testing with Canary and
categorizes them based on their nature and severity.

Number of the Bugs. Over a nine-month evaluation period from June 2021 to
March 2022, Canary uncovered 123 unique bugs across Z3 and CVC4. Table
summarizes the status of these bugs. Out of the total, 108 were confirmed by
solver developers, and 107 have already been addressed through patches. These
outcomes demonstrate Canary’s capacity to surface substantive issues in mature,
production-grade solvers.

Types of the Bugs. Table [2| categorizes the confirmed bugs according to their
type. Crash bugs form the majority (71 out of 108), followed by invalid model
bugs (28) and soundness errors (9). Invalid model bugs indicate situations where
the solver produces a model that does not satisfy the input formula, while sound-
ness bugs involve incorrect satisfiability results. Notably, correctness issues (in-
valid models and soundness bugs) account for over 35% of the confirmed bugs,
emphasizing Canary’s strength in detecting deep semantic flaws.

Table 1: Summary of the bugs found Table 2: Bug types among the con-

by Canary. firmed bugs.

Status Z3 CVC4 Total Type Z3 CVC4 Total
Reported 83 40 123 Soundness 6 3 9
Confirmed 75 33 108 Invalid model 21 7 28
Fixed 75 32 107 Crash 48 23 71
Duplicate 1 5 6

Won’t fix 7 2 9

Diversity of the Theories. Figure 2] depicts the distribution of theories among
bug-triggering formulas. While AUFLIA, QF_BV, and AUFBV were the most
frequent, a broad range of logics were represented, showcasing Canary’s gener-
ality across multiple theory combinations. Notably, QF_BV-—one of the most
mature and widely adopted SMT theories—accounts for a substantial portion of
the triggered bugs, underscoring the practical relevance of Canary’s findings.

Impact on Solvers’ Codebase. To assess the development effort required
to resolve identified bugs, we analyzed the corresponding commits. Specifically,
we examined the number of files and lines of code modified in each commit.
As illustrated in Figure [3] most fixes altered fewer than five files, suggesting
localized issues, yet some required broader changes, highlighting how a single
bug may uncover structural weaknesses. In total, 196 files and 5,669 lines of
code were modified to fix bugs discovered by Canary.

In Figure [4 we studied the most changed files in these commits fixing bugs
found by Canary. In Z3, the most modified files concern the array theory solver
and EUF solver, among others. In contrast, the most frequently fixed files in

11

60 60

Count
2

12
10 1010 ¢

55 5 5 5 5 4
33
2222 1L

NI IR N 2 g LRI, S S
,%,\’\QQ?\%V@Q“/Q’

SR SRUROF IR PIL TS F LS TG T TS S F
N & ST VLI VS Y T T TS VW
FgFT P S $ L v SRS N $7 Y .
Q?OQQ/?&Y}}Q 0033. & \,?go}/ R va‘(?g(0&(/6‘/3‘ Q“&o“/ Oé &\O
s s's’ S
Logic Types

Fig.2: The number of bug-triggering formulas from different theories.

CVC(4 are the theory model builder, the quantifiers rewriter, and the sequences
rewriter. These results provide insight into the solver components most suscep-
tible to errors uncovered by Canary.

Summary. Our evaluation demonstrates that Canary is highly effective in test-
ing SMT solvers. Here are the key highlights:

— Canary identified 123 bugs, with 108 confirmed and 107 already addressed.

— Bugs span a diverse set of SMT-LIB2 theories, including strings, (non-)linear
arithmetic, bit-vectors, uninterpreted functions, floating-point operations,
and combinations thereof.

— Many confirmed bugs were triggered in the solvers’ default configurations,
demonstrating the tool’s ability to expose real-world failures without relying
on exotic options.

4.2 Code Coverage

In addition to bug discovery, we evaluated Canary’s ability to increase code
coverage in SMT solvers.

Experimental Design. We used the seed formulas from HistFuzz, which are
sampled from the SMT-LIB2 library to represent a diverse range of theories
and complexity levels. We generated 100 mutants for each seed using Canary’s
partition-based strategies. First, we ran the baseline fuzzers to collect their cover-
age results. Then, we layered Canary’s partitioning techniques onto these fuzzers
to measure the incremental improvement in coverage.

To ensure fair and reproducible comparisons, we set the solver timeout to two
seconds per formula—enough time to process most formulas without excessive
resource consumption. We compiled both Z3 and CVC4 in debug mode without
optimizations to enable accurate coverage measurement. We used gcov to record
three key coverage metrics: line coverage (1), function coverage (f), and branch

12

_ 73
612 CVCs
o)
E 10
g
o
O
5 8
o
]
(]
26
<
=
O
b 4
=
E
S 2
0 50 100 150 200 250

Total Lines Changed per Commit (Lines)

Fig. 3: Distribution of file changes and lines of code changes for Z3 and CVC4
bug-fixing commits.

coverage (b). Each experiment was run three times, and we report the average
results to account for any variability.

Integration with Other Fuzzers. To assess the compatibility and impact

of Canary’s core partitioning strategies when integrated with existing fuzzing

frameworks, we combined Canary with two leading fuzzers, HistFuzz and Yinyang.
Table [3] presents the resulting coverage metrics, illustrating the benefits of aug-

menting these state-of-the-art tools with our approach.

The results highlight that Canary’s partitioning techniques serve as effec-
tive, modular enhancements to existing approaches. When integrated with other
fuzzing strategies, our approach yields consistent improvements across all cover-
age metrics. For Z3, combining Canary with HistFuzz increased line coverage by
0.7 percentage points, function coverage by 0.7 percentage points, and branch
coverage by 0.6 percentage points. Similarly, the Yinyang integration showed
improvements of 0.6, 0.5, and 0.6 percentage points, respectively. For CVC4,
both combinations demonstrated notable improvements, with HistFuzz+Canary
achieving particularly strong results: 33.1% line coverage, 46.9% function cover-
age, and 26.9% branch coverage. The consistency of these improvements across
both solvers indicates that Canary’s partitioning strategy offers fundamental
benefits that transcend specific solver implementations.

These results are particularly significant because they demonstrate that Ca-
nary can enhance even the most sophisticated existing fuzzers. The improve-

13

25
[E—
389 21 ‘ 400

= 20
2
L k300
< 154 14 g
= 2
] 226 12 S
5 190 2
Sl M 177 k200 £
= 10 9 =
2 136 g
= =
-4

5 - 100

0 Lo

dy\w? e ﬁ\m? \C\\,cv ‘\‘d,cv & o
R T o N
) o 3

Filename in Z3

(a) Most frequently fixed files in Z3.

Related commit number

182 3 3 Total lines changed

w
L

i<}

=3

S

T
I
3

¥
!

100

58

Total lines changed

Related commit number

46

T
o
=]

30

o o
& &

e 3
G o W
o o o

Filename in CVC5

(b) Most frequently fixed files in CVCA4.

Fig. 4: Number of commits and changed lines of Top 5 fixed files in Z3 and CVCA4.

ments stem from Canary’s ability to generate semantically diverse yet valid for-
mulas that exercise different solver components through targeted partitioning.

Ablation Study. We conducted an ablation study to understand the contribu-
tion of each component of Canary to the overall improvement in coverage. We
created three variants by selectively removing one core component at a time:

— Canary-NoCube: Excludes cube-based partitioning;
— Canary-NoDomain: Excludes numerical domain constraints;
— Canary-NoQuant: Excludes quantifier manipulations.

Table [d] presents the coverage results for each variant across different baseline
fuzzers. The patterns revealed by this ablation study are nuanced and informa-
tive. While removing any component generally reduced overall coverage, certain
variants performed better in specific contexts, indicating that the optimal con-
figuration may depend on both the target solver and the baseline fuzzer.

For instance, for HistFuzz, Canary-NoQuant unexpectedly achieved better
coverage compared to Canary-NoCube. This suggests that cube-based parti-

14

Table 3: Line coverage (1), function coverage (f), and branch coverage (b) results
of using Canary to enhance existing fuzzers.

Tool 73 (1/f/b) CVC4 (1/f/b)

Canary 24.4% / 27.0% / 20.6% 27.9% | 43.5% | 22.5%
Hist Fuzz 32.4% / 32.9% / 28.8% 32.1% / 46.2% / 25.9%
HistFuzz+Canary 33.1% / 33.6% / 29.4% 33.1% / 46.9% / 26.9%
Yinyang 27.0% / 28.8% / 24.0% 27.9% / 43.8% | 22.6%
Yinyang+Canary 27.6% / 29.3% / 24.6% 28.8% / 44.3% / 23.5%

Table 4: Line coverage (1), function coverage (f), and branch coverage (b) results
for different variants of Canary.

Baseline Canary variant Z3 (1/f/b) CVC4 (1/f/b)
Canary-NoCube 33.1% / 33.6% / 29.6% 32.2% / 45.6% / 26.4%

HistFuzz Canary-NoDomain 32.8% / 33.4% / 29.4% 32.4% / 45.9% / 26.5%
Canary-NoQuant 33.3% / 33.8% / 29.8% 32.8% / 45.9% / 26.8%
Canary-NoCube 25.0% / 27.2% / 21.3% 28.5% / 43.7% / 23.3%

Yinyang Canary-NoDomain 27.9% / 29.5% / 24.6% 28.5% / 43.7% / 23.3%

Canary-NoQuant

27.4% / 28.9% / 24.4%

28.0% / 43.5% / 22.6%

tioning may be more important than quantifier manipulations when starting
from HistFuzz’s mutation strategy. The most interesting variation appeared with
Yinyang as the baseline. For Z3, Canary-NoQuant achieved notably higher cov-
erage than Canary-NoCube, while for CVC4, the opposite was true—Canary-
NoCube performed better than Canary-NoQuant.

These results have important implications for Canary’s design and deploy-
ment. They suggest that: (1) No single component is universally dominant; the
effectiveness depends on the context; (2) Different solvers benefit from different
aspects of Canary’s partitioning strategy; (3) There may be interaction effects
between Canary’s components and the baseline fuzzer’s mutation strategy.

Summary. These results indicate that Canary can help improve code coverage
across multiple dimensions—Iline, function, and branch—when used alone or in
conjunction with existing fuzzers. While code coverage is a useful metric, it has
its limitations. The relative coverage gains shown in our results may appear mod-
est, as the baseline fuzzers are already effective at exploring many of the simpler
execution paths in the solvers. However, the small percentage improvements still
represent meaningful absolute increases in the number of lines, functions, and
branches of code being tested. The coverage also provides a complementary set of
stress-testing mechanisms that can uncover new and interesting solver behaviors.

15

Table 5: Comparison of bugs found by different tools within one week.

73 CVC4
Tool
Soundness Invalid Model Crash Soundness Invalid Model Crash
HistFuzz 2 2 5 1 1 3
HistFuzz+Canary 4 2 6 3 1 4
Yinyang 4 0 3 2 1 1
Yinyang+Canary 4 1 5 3 1 3

4.3 Controlled Experiments for Bug Detection

To further evaluate the effectiveness of Canary, we conducted a head-to-head
comparison with two state-of-the-art SMT solver fuzzing tools, including Hist-
Fuzz [28] and Yinyang [20].

Experimental Design. All tools were evaluated under identical experimental
conditions: each was run for one week on the same hardware platform, using
an identical set of seed formulas. During this period, we systematically recorded
both the number and types of unique bugs uncovered in 7Z3-4.8.7 and CVC4-1.8.
The results of this comparative study are presented in Table

Quantitative Analysis. The integration of Canary with baseline fuzzers shows
consistent improvements. For HistFuzz, the combination with Canary increased
the total number of bugs found from 14 to 20, with notable gains in soundness
bugs and crash bugs. Similarly, for Yinyang, the integration improved the total
bug count from 11 to 17, with significant improvements in crash bugs and the
discovery of invalid model bugs.

Qualitative Analysis. The results reveal several important patterns. First,
Canary demonstrates particular strength in detecting soundness bugs—the most
critical type of correctness issues. When combined with HistFuzz, it doubled the
number of soundness bugs found, and when combined with Yinyang, it main-
tained the high detection rate. This suggests that subspace diversification is
particularly effective at uncovering deep semantic errors that affect solver cor-
rectness. Second, the integration shows consistent improvements in crash detec-
tion. Both HistFuzz+Canary and Yinyang+Canary found more crash bugs than
their baseline counterparts, indicating that our partitioning strategies can ex-
pose execution paths that lead to unexpected termination. Third, the discovery
of invalid model bugs by Yinyang+Canary where the baseline Yinyang found
none demonstrates that Canary’s approach can uncover bugs that are missed by
existing techniques.

Cross-Solver Analysis. The results also show interesting patterns across dif-
ferent SMT solvers. For Z3, the improvements are more pronounced, with Hist-
Fuzz+Canary finding 12 bugs compared to HistFuzz’s 9, and Yinyang+Canary
finding 10 bugs compared to Yinyang’s 7. For CVC4, the improvements are
more modest but still consistent, with both combinations showing better per-
formance than their baselines. This cross-solver analysis suggests that Canary’s

16

effectiveness may be influenced by the specific characteristics of each solver’s im-
plementation. Z3’s more complex architecture and broader theory support may
provide more opportunities for subspace diversification to uncover bugs, while
CVC4’s more focused design may require more targeted partitioning strategies.

Complementarity Analysis. Notably, Canary is able to find bugs that are
not detected by other state-of-the-art fuzzers, indicating that our approach can
uncover unique issues missed by existing techniques. This confirms that subspace
diversification is an effective strategy for uncovering deep and subtle semantic
errors that are often overlooked by existing fuzzing techniques. The fact that
different combinations (HistFuzz+Canary vs. Yinyang+Canary) find different
sets of bugs suggests that Canary’s partitioning strategies can adapt to and
enhance different baseline approaches.

Summary. These results confirm that Canary is not only effective in finding
a large number of bugs, but also excels at uncovering critical correctness is-
sues in SMT solvers compared to state-of-the-art fuzzers under the same testing
budget. We believe that combining complementary testing techniques within a
unified system represents a promising direction. Such a system would leverage
the strengths of individual methods while mitigating their weaknesses, yielding
a more robust and comprehensive testing pipeline for SMT solvers.

4.4 Assorted Sample Bugs

In this section, we select and discuss six reported Z3 and CVC4 bugs. classifica-
tions and status.

Figure [pa] shows a refutation soundness bug in Z3. The reason is that models
are prematurely reported invalid when the EUF (Equality with Uninterpreted
Functions) solver is active. The developers fixed the issue by deferring certain
validation checks until after the EUF-specific model construction is completed.

Figure [5b| shows a solution to a soundness bug in CVC4’s quantifier instanti-
ation engines. It is marked as “major”, which is the highest severity in CVC4’s
bug tracking system. The bug is caused by allowing ineligible terms to appear
in the instantiations.

Figure pc shows a crash bug in CVC4 caused by an assertion that requires
the model to always have a shared term for the real term in the conversion from
real to floating-point value.

Figure shows an invalid model bug in Z3’s bit-vector solver. This bug is
triggered by a corner case in the signed arithmetic solver, where the input has a
bit-width of 1.

Figure[5e]shows an invalid model bug in CVC4’s ALIRA logic. This is because
the sanity check for integer models in linear arithmetic was too strict when the
linear solver had assigned a real value to an integer variable.

Figure [5fl shows a crash bug in Z3’s eager generation of axioms. This is due
to the unconditional eager generation of axioms for arithmetic disequalities. The
developers fixed the issue by controlling the generation of this axiom.

S © 00O Utk Wi

14
15
16

(declare—fun x () Real)

17

(assert (and (> 0.0 x) (= 0.0

(/ 0.0 x))))

(check—sat—using (then
add—bounds
propagate—ineqs
purify—arith uflra))

(a) A refutation soundness bug in Z3.

(declare—const X (-
FloatingPoint 8 24))

(declare—const R Real)

(assert (=X ((- to_fp 8 24)
RTZ (— R))))

(assert (=X ((- to_fp 8 24)
RTZ 0)))

(check—sat)

(c) A crash bug in CVCA4.

(set—logic ALIRA)

(declare—const x Real)

(declare—fun i () Int)

(declare—fun il () Int)

(push)

(assert (< 1 (— i)))

(check—sat)

(pop)

(push)

(assert (or (>= il (* 5 (— i
))))

(check—sat)

(pop)

(assert (or (> il 1) (= x (
to_real i))))

(check—sat)

(assert (mnot (is_int x)))

(check—sat)

(e) An invalid model bug in CVC4

~—

1 (declare—datatypes ((E 0))

(((c (a Bool)))))
2 (assert (forall ((v E)) (and

(a v))))
3 (check—sat)

(b) A solution soundness bug in CVC4.

1 (set—option :model_validate
true)

2 (declare—fun bv_4—0 () (-
BitVec 1))

3 (assert (mnot (bvsmul_noovfl
bv_4—0 bv_4—0)))

4 (check—sat)

(d) An invalid model bug in Z3.

1 (set—option :smt.arith.
eager_eq_axioms false)

2 (declare—fun z () Int)

3 (declare—fun y () Int)

4 (declare—fun x () Int)

5 (declare—fun named3 () Bool)

6 (declare—fun named5 () Bool)

7 (declare—fun named6 () Bool)

8 (declare—fun named7 () Bool)

9 (assert (and (=y (+ x 1)) (=
(x5 2))))

10 (assert (or named6 (not
named3)))

11 (assert (or (not named5) (=y
0)))

12 (assert (or named7 (= z y)))
13 (get—consequences (named5) (
named3 named?7))

(f) A crash bug in Z3.

Fig. 5: Sampled bugs detected by Canary.

4.5 Discussions

Limitations. While Canary has demonstrated effectiveness in uncovering bugs
and improving solver coverage, several limitations merit discussion. First, the ef-
ficacy of partition-based mutation is theory-dependent; certain SMT fragments

18

may not benefit uniformly from the same mutation strategies. Second, our eval-
uation assumes deterministic solver behavior. Solvers employing randomized
heuristics may exhibit variability across runs, complicating reproducibility and
analysis. Third, as solvers evolve and adapt to current mutation patterns, the
marginal utility of existing strategies may diminish, necessitating continual re-
finement of mutation operators to maintain effectiveness.

Adaptivity and Mutation Strategy Evolution. To sustain long-term effec-
tiveness, mutation strategies must evolve. One avenue is to monitor metrics such
as coverage growth or behavioral divergence over time; a plateau in these metrics
may signal the need for strategy revision. Canary’s modular design facilitates the
integration of adaptive mechanisms, such as online bandit algorithms that reallo-
cate probability mass among operators based on empirical utility. Additionally,
synthesizing new mutation operators—e.g., via SyGuS or learned models—offers
a principled path to expanding the mutation space.

Program Analysis for Targeted Mutation. Incorporating program anal-
ysis—both static and dynamic—can potentially improve the relevance and ef-
fectiveness of mutations. Static analysis of seed formulas can uncover logical
dependencies among variables or subformulas, enabling the generation of non-
trivial subspace partitions, such as those that preclude trivially inconsistent
cubes. Complementarily, dynamic analysis (e.g., runtime coverage profiling, logs
of SMT solvers) can identify under-tested components of SMT solvers, guiding
the mutation engine to generate inputs that stress these components, thereby
improving bug exposure and coverage.

Applications Beyond Solver Testing. The partition-based mutation ap-
proach introduced in Canary has potential applications beyond SMT solver
testing. Similar principles could be adapted to test other formal reasoning tools,
such as theorem provers and program verifiers. Additionally, the generated di-
verse yet semantically connected formula sets could serve as benchmarks for
evaluating solver performance or as training data for machine learning models
to predict solver behavior [38]. The semantic partitioning approach might also
inform strategies for distributed solving [32] [31], where formula space is parti-
tioned intelligently among parallel solver instances.

5 Related Work

SMT Solver Testing. FuzzSMT [2]I] introduced grammar-based fuzzing to
evaluate SMT solvers, marking one of the earliest efforts in this domain. Sub-
sequent tools such as StringFuzz [22] and Winterer et al. [20] contributed a
type-aware mutation strategy to improve the generation of diverse SMT formu-
las. However, these methods primarily rely on differential testing—comparing
the outputs of multiple solvers—to detect inconsistencies. To address this issue,
more recent approaches have focused on generating formulas with known sat-
isfiability outcomes. Bugariu et al.[I8] proposed constructing increasingly com-
plex string formulas through satisfiability-preserving transformations. Winterer

19

et al.[I7] introduced semantic fusion to obtain mutants of formulas whose sat-
isfiability status remains unchanged. Existing mutation techniques either focus
on localized syntactic changes or changes vastly different from the seed, but the
seed formula’s original search space may not be thoroughly tested. Subspace di-
versification explicitly partitions a formula’s solution space into disjoint regions
using additional constraints.

Bounded-Exhaustive Testing. The principle behind bounded-exhaustive test-
ing (BET) [39H42] is to systematically explore all inputs up to a predefined size
or complexity. The underlying assumption is that many software defects are ex-
posed by relatively small inputs, making exhaustive testing over these inputs
an effective strategy for bug discovery. There are two prominent approaches in
this space: declarative and imperative enumeration. Declarative methods [39]
leverage logical invariants to constrain the space of valid inputs, while imper-
ative strategies [43] construct inputs procedurally based on specific structural
specifications. While BET offers thorough coverage, it faces challenges related
to scalability and efficiency. To mitigate these issues, several optimization tech-
niques have been proposed, such as sparse test generation [44] and structural
test merging [45]. Our work draws inspiration from BET by employing small,
bounded syntactical modifications. However, a key distinction is that our muta-
tions also aim to constrain the search space semantically, guiding the generation
towards more meaningful variations beyond purely structural exploration.

6 Conclusion

We have presented bounded-exhaustive subspace diversification, a principled ap-
proach to testing SMT solvers that targets underexplored regions of the solution
space. Our implementation, Canary, uncovered 108 previously unknown bugs in
73 and CVC4. These bugs span a wide range of bug types, input logics, and solver
configurations, demonstrating the generality and effectiveness of our approach.

Acknowledgements

We would like to thank the reviewers for their helpful feedback. This work is
supported by the National Key R&D Program of China (2023YFB3106000), the
National Natural Science Foundation of China (62302434, U2341212, 62302442),
and ZJU-China Unicom Digital Security Joint Laboratory. Peisen Yao is the
corresponding author.

(1]

[10]

[11]

[12]

Bibliography

Koushik Sen, Darko Marinov, and Gul Agha. Cute: a concolic unit testing engine
for c¢. In Proceedings of the 10th European Software Engineering Conference Held
Jointly with 13th ACM SIGSOFT International Symposium on Foundations of
Software Engineering, ESEC/FSE-13, pages 263-272, New York, NY, USA, 2005.
ACM. doi: 10.1145/1081706.1081750.

Cristian Cadar, Vijay Ganesh, Peter M Pawlowski, David L Dill, and Dawson R
Engler. Exe: automatically generating inputs of death. pages 322-335, 2006. doi:
10.1145/1180405.1180445.

Heqing Huang, Peisen Yao, Rongxin Wu, Qingkai Shi, and Charles Zhang. Pan-
golin: Incremental hybrid fuzzing with polyhedral path abstraction. In 2020 IEEE
Symposium on Security and Privacy, SP 2020, San Francisco, CA, USA, May 18-
21, 2020, pages 1613-1627. IEEE, 2020. doi: 10.1109/SP40000.2020.00063.
Leonardo Alt, Sepideh Asadi, Hana Chockler, Karine Even Mendoza, Grigory
Fedyukovich, Antti EJ Hyvérinen, and Natasha Sharygina. Hifrog: Smt-based
function summarization for software verification. In International Conference on
Tools and Algorithms for the Construction and Analysis of Systems, pages 207—
213. Springer, 2017.

Peisen Yao, Qingkai Shi, Heqing Huang, and Charles Zhang. Program analysis via
efficient symbolic abstraction. Proc. ACM Program. Lang., 5(O0OPSLA), 2021.
Matthias Heizmann, Jochen Hoenicke, and Andreas Podelski. Software model
checking for people who love automata. In International Conference on Computer
Aided Verification, pages 36-52. Springer, 2013.

Armando Solar-Lezama and Rastislav Bodik. Program synthesis by sketching.
Citeseer, 2008.

Tim Blazytko, Moritz Contag, Cornelius Aschermann, and Thorsten Holz. Syn-
tia: Synthesizing the semantics of obfuscated code. In Engin Kirda and Thomas
Ristenpart, editors, 26th USENIX Security Symposium, USENIX Security 2017,
Vancouver, BC, Canada, August 16-18, 2017, pages 643—-659. USENIX Associa-
tion, 2017.

Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury. Angelix: Scalable mul-
tiline program patch synthesis via symbolic analysis. In Proceedings of the 38th
International Conference on Software Engineering, ICSE ’16, pages 691-701, New
York, NY, USA, 2016. ACM. doi: 10.1145,/2884781.2884807.

Hoang Duong Thien Nguyen, Dawei Qi, Abhik Roychoudhury, and Satish Chan-
dra. Semfix: Program repair via semantic analysis. In Proceedings of the 2013
International Conference on Software Engineering, ICSE 13, pages 772-781, Pis-
cataway, NJ, USA, 2013. IEEE Press.

Niki Vazou, Eric L. Seidel, Ranjit Jhala, Dimitrios Vytiniotis, and Simon Peyton
Jones. Refinement types for haskell. In Proceedings of the 19th ACM SIGPLAN In-
ternational Conference on Functional Programming (ICFP), pages 269-282. ACM,
2014. doi: 10.1145/2628136.2628161.

A. Champion, T. Chiba, N. Kobayashi, and R. Sato. Ice-based refinement
type discovery for higher-order functional programs. In Tools and Algorithms
for the Construction and Analysis of Systems (TACAS), volume 10805 of Lec-
ture Notes in Computer Science, pages 365-383. Springer, 2018. doi: 10.1007/
978-3-319-89960-2_20.

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

21]

[22]

21

Thanassis Avgerinos, Alexandre Rebert, Sang Kil Cha, and David Brumley. En-
hancing symbolic execution with veritesting. In Proceedings of the 36th Inter-
national Conference on Software Engineering, ICSE 2014, pages 1083—1094, New
York, NY, USA, 2014. ACM. doi: 10.1145/2568225.2568293.

Stuart Pernsteiner, Calvin Loncaric, Emina Torlak, Zachary Tatlock, Xi Wang,
Michael D. Ernst, and Jonathan Jacky. Investigating safety of a radiotherapy
machine using system models with pluggable checkers. In Computer Aided Verifi-
cation (CAV 2016), Part II, volume 9780 of Lecture Notes in Computer Science,
pages 23—41. Springer, 2016. doi: 10.1007/978-3-319-41540-6_2.

Byron Cook. Formal reasoning about the security of amazon web services. In
International Conference on Computer Aided Verification, pages 38-47. Springer,
2018.

Malik Bouchet, Byron Cook, Bryant Cutler, Anna Druzkina, Andrew Gacek,
Liana Hadarean, Ranjit Jhala, Brad Marshall, Daniel Peebles, Neha Rungta, Cole
Schlesinger, Chriss Stephens, Carsten Varming, and Andy Warfield. Block pub-
lic access: trust safety verification of access control policies. In Prem Devanbu,
Myra B. Cohen, and Thomas Zimmermann, editors, ESEC/FSE ’20: 28th ACM
Joint European Software Engineering Conference and Symposium on the Founda-
tions of Software Engineering, Virtual Event, USA, November 8-13, 2020, pages
281-291. ACM, 2020. doi: 10.1145/3368089.3409728.

Dominik Winterer, Chengyu Zhang, and Zhendong Su. Validating SMT solvers via
semantic fusion. In Alastair F. Donaldson and Emina Torlak, editors, Proceedings
of the 41st ACM SIGPLAN International Conference on Programming Language
Design and Implementation, PLDI 2020, London, UK, June 15-20, 2020, pages
718-730. ACM, 2020. doi: 10.1145/3385412.3385985. URL https://doi.org/10.
1145/3385412.3385985.

Alexandra Bugariu and Peter Miiller. Automatically testing string solvers. In
Gregg Rothermel and Doo-Hwan Bae, editors, ICSE ’20: 42nd International
Conference on Software Engineering, Seoul, South Korea, 27 June - 19 July,
2020, pages 1459-1470. ACM, 2020. doi: 10.1145/3377811.3380398. URL https:
//doi.org/10.1145/3377811.3380398.

Muhammad Numair Mansur, Maria Christakis, Valentin Wiistholz, and Fuyuan
Zhang. Detecting critical bugs in smt solvers using blackbox mutational fuzzing.
In Proceedings of the 28th ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (ESEC/FSE), pages
1-12, New York, NY, USA, 2020. ACM. doi: 10.1145/3368089.3409736. URL
https://doi.org/10.1145/3368089.3409736.

Dominik Winterer, Chengyu Zhang, and Zhendong Su. On the unusual effec-
tiveness of type-aware operator mutations for testing SMT solvers. Proc. ACM
Program. Lang., 4(OOPSLA):193:1-193:25, 2020. doi: 10.1145/3428261. URL
https://doi.org/10.1145/3428261

Robert Brummayer and Armin Biere. Fuzzing and delta-debugging smt solvers.
In Proceedings of the 7th International Workshop on Satisfiability Modulo The-
ories, SMT ’09, page 1-5, New York, NY, USA, 2009. Association for Com-
puting Machinery. ISBN 9781605584843. doi: 10.1145/1670412.1670413. URL
https://doi.org/10.1145/1670412.1670413|

Dmitry Blotsky, Federico Mora, Murphy Berzish, Yunhui Zheng, Ifaz Kabir, and
Vijay Ganesh. Stringfuzz: A fuzzer for string solvers. In Hana Chockler and Georg
Weissenbacher, editors, Computer Aided Verification - 30th International Confer-
ence, CAV 2018, Held as Part of the Federated Logic Conference, FloC 2018, Oz-

https://doi.org/10.1145/3385412.3385985
https://doi.org/10.1145/3385412.3385985
https://doi.org/10.1145/3377811.3380398
https://doi.org/10.1145/3377811.3380398
https://doi.org/10.1145/3368089.3409736
https://doi.org/10.1145/3428261
https://doi.org/10.1145/1670412.1670413

22

23]

[24]

[25]

[26]

[27]

[28]

29]

[30]

31]

[32]

33]

ford, UK, July 14-17, 2018, Proceedings, Part I, volume 10982 of Lecture Notes in
Computer Science, pages 45-51. Springer, 2018. doi: 10.1007/978-3-319-96142-2\
6. URL https://doi.org/10.1007/978-3-319-96142-2_6l

Peisen Yao, Heqing Huang, Wensheng Tang, Qingkai Shi, Rongxin Wu, and
Charles Zhang. Fuzzing smt solvers via two-dimensional input space exploration.
In ISSTA’21: 80th ACM SIGSOFT International Symposium on Software Testing
and Analysis, Virtual Event, USA, 2021. doi: 10.1145/3460319.3464803. URL
https://doi.org/10.1145/3460319.3464803.

Joseph Scott, Federico Mora, and Vijay Ganesh. Banditfuzz: A reinforcement-
learning based performance fuzzer for SMT solvers. In Maria Christakis, Na-
dia Polikarpova, Parasara Sridhar Duggirala, and Peter Schrammel, editors, Soft-
ware Verification - 12th International Conference, VSTTE 2020, and 13th In-
ternational Workshop, NSV 2020, Los Angeles, CA, USA, July 20-21, 2020,
Revised Selected Papers, volume 12549 of Lecture Notes in Computer Science,
pages 68-86. Springer, 2020. doi: 10.1007/978-3-030-63618-0_5. URL https:
//doi.org/10.1007/978-3-030-63618-0_5.

Peisen Yao, Heqing Huang, Wensheng Tang, Qingkai Shi, Rongxin Wu, and
Charles Zhang. Skeletal approximation enumeration for smt solver testing. In
Proceedings of the 29th ACM Joint FEuropean Software Engineering Conference
and Symposium on the Foundations of Software Engineering, ESEC/FSE 2021.
Association for Computing Machinery, 2021.

Dominik Winterer and Zhendong Su. Validating smt solvers for correctness and
performance via grammar-based enumeration. Proceedings of the ACM on Pro-
gramming Languages, 8(OOPSLA2):355:1-355:24, 2024. doi: 10.1145/3689795.
Jongwook Kim, Sunbeom So, and Hakjoo Oh. Diver: Oracle-guided smt solver
testing with unrestricted random mutations. In Proceedings of the 45th Inter-
national Conference on Software Engineering (ICSE 2023), pages 2224-2236.
IEEE, 2023. doi: 10.1109/ICSE48619.2023.00187. URL https://doi.org/10.
1109/ICSE48619.2023.00187.

Maolin Sun, Yibiao Yang, Ming Wen, Yongcong Wang, Yuming Zhou, and Hai
Jin. Validating smt solvers via skeleton enumeration empowered by historical bug-
triggering inputs. In 2028 IEEE/ACM 45th International Conference on Software
Engineering (ICSE), pages 69-81. IEEE, 2023. ISBN 9798350323701. doi: 10.
1109/ICSE48619.2023.00020.

Antoine Miné. The octagon abstract domain. Higher-order and symbolic compu-
tation, 19(1):31-100, 2006.

Guangsheng Fan, Ligian Chen, Banghu Yin, Wenyu Zhang, Peisen Yao, and
Ji Wang. Program analysis combining generalized bit-level and word-level ab-
stractions. In Proceedings of the ACM SIGSOFT International Symposium on
Software Testing and Analysis, ISSTA ’25. ACM, 2025.

Marijn J. H. Heule, Oliver Kullmann, Siert Wieringa, and Armin Biere. Cube
and conquer: Guiding CDCL SAT solvers by lookaheads. In Haifa Verification
Conference (HVC), volume 7261 of Lecture Notes in Computer Science, pages
50-65. Springer, 2012. doi: 10.1007/978-3-642-34188-5_8.

Peter van der Tak, Marijn J. H. Heule, and Armin Biere. Concurrent cube-and-
conquer. In Proceedings of the 15th International Conference on Theory and Appli-
cations of Satisfiability Testing (SAT), volume 7317 of Lecture Notes in Computer
Science, pages 475-476. Springer, 2012. doi: 10.1007/978-3-642-31612-8_42.

Y. Ge and L. M. de Moura. Complete instantiation for quantified formulas in
satisfiability modulo theories. In Computer Aided Verification, 21st International
Conference, CAV, pages 306-320, 2009.

https://doi.org/10.1007/978-3-319-96142-2_6
https://doi.org/10.1145/3460319.3464803
https://doi.org/10.1007/978-3-030-63618-0_5
https://doi.org/10.1007/978-3-030-63618-0_5
https://doi.org/10.1109/ICSE48619.2023.00187
https://doi.org/10.1109/ICSE48619.2023.00187

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

23

K Rustan M Leino and Clément Pit-Claudel. Trigger selection strategies to sta-
bilize program verifiers. In Computer Aided Verification: 28th International Con-
ference (CAV’16).

Clark Barrett, Aaron Stump, and Cesare Tinelli. The satisfiability modulo theories
library (smt-lib). www. SMT-LIB. org, 15:18-52, 2010.

Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitriy
Vyukov. Addresssanitizer: A fast address sanity checker. In Gernot Heiser and
Wilson C. Hsieh, editors, 2012 USENIX Annual Technical Conference, Boston,
MA, USA, June 13-15, 2012, pages 309-318. USENIX Association, 2012.

G Team. Gcov-using the gnu compiler collection (gcc). Online, disponwel em
http://gce. gnu. org/onlinedocs/gcc/Geov. hitml-Ultimo acesso em, 26(02):2015,
2014.

Mislav Balunovic, Pavol Bielik, and Martin Vechev. Learning to solve smt formu-
las. In Advances in Neural Information Processing Systems, pages 10317-10328,
2018.

Darko Marinov and Sarfraz Khurshid. Testera: A novel framework for automated
testing of java programs. In Proceedings of the 16th IEEFE International Conference
on Automated Software Engineering (ASE), pages 22-31. IEEE Computer Society,
2001. doi: 10.1109/ASE.2001.989792.

Kevin Sullivan, Jinlin Yang, David Coppit, Sarfraz Khurshid, and Daniel Jackson.
Software assurance by bounded exhaustive testing. In Proceedings of the 200/
ACM SIGSOFT international symposium on Software testing and analysis, pages
133-142, 2004.

Qirun Zhang, Chengnian Sun, and Zhendong Su. Skeletal program enumeration for
rigorous compiler testing. In Proceedings of the 38th ACM SIGPLAN Conference
on Programming Language Design and Implementation, pages 347-361, 2017.
Muhammad Usman, Wenxi Wang, and Sarfraz Khurshid. Testmc: Testing model
counters using differential and metamorphic testing. In 35th IEEE/ACM In-
ternational Conference on Automated Software Engineering, ASE 2020, Mel-
bourne, Australia, September 21-25, 2020, pages 709-721. IEEE, 2020. doi:
10.1145/3324884.3416563.

Chandrasekhar Boyapati, Sarfraz Khurshid, and Darko Marinov. Korat: Auto-
mated testing based on java predicates. In Proceedings of the 2002 ACM SIGSOFT
International Symposium on Software Testing and Analysis (ISSTA), pages 123—
133. ACM, 2002. doi: 10.1145/566172.566191.

Yunho Kim and Shin Hong. Deminer: test generation for high test coverage
through mutant exploration. Software Testing, Verification and Reliability, 31
(1-2):e1715, 2021. doi: 10.1002/stvr.1715.

Jeff Offutt, Shaoying Liu, Aynur Abdurazik, and Paul Ammann. Generating test
data from state-based specifications. Software Testing, Verification and Reliability,
13(1):25-53, 2003. doi: 10.1002/stvr.264.

	Bounded-Exhaustive Subspace Diversification for SMT Solver Testing

