
Place Your Locks Well:
Understanding and Detecting Lock Misuse Bugs

Yuandao Cai Peisen Yao Chengfeng Ye Charles Zhang
The Hong Kong University of Science and Technology

{ycaibb, pyao, cyeaa, charlesz}@cse.ust.hk

Abstract
Modern multi-threaded software systems commonly
leverage locks to prevent concurrency bugs. Neverthe-
less, due to the complexity of writing the correct con-
current code, using locks itself is often error-prone. In
this work, we investigate a general variety of lock mis-
uses. Our characteristic study of existing CVE IDs re-
veals that lock misuses can inflict concurrency errors and
even severe security issues, such as denial-of-service and
memory corruption. To alleviate the threats, we present
a practical static analysis framework, namely LOCK-
PICK, which consists of two core stages to effectively
detect misused locks. More specifically, LOCKPICK first
conducts path-sensitive typestate analysis, tracking lock-
state transitions and interactions to identify sequential
typestate violations. Guided by the preceding results,
LOCKPICK then performs concurrency-aware detection
to pinpoint various lock misuse errors, effectively rea-
soning about the thread interleavings of interest. The
results are encouraging — we have used LOCKPICK to
uncover 203 unique and confirmed lock misuses across a
broad spectrum of impactful open-source systems, such
as OpenSSL, the Linux kernel, PostgreSQL, MariaDB,
FFmpeg, Apache HTTPd, and FreeBSD. Three exciting
results are that those confirmed lock misuses are long-
latent, hiding for 7.4 years on average; in total, 16 CVE
IDs have been assigned for the severe errors uncovered;
and LOCKPICK can flag many real bugs missed by the
previous tools with significantly fewer false positives.

1 Introduction

As concurrency becomes a popular programming model
for enhancing the performance of modern software, it
is also the culprit of many subtle errors stemming from
complex memory interactions between threads [31, 51].
Even worse, there is abundant evidence that concurrency
attacks are both practical and harmful [18, 100, 103], re-
sulting in cataclysmic disasters [41, 92]. To mitigate the

threats, a plethora of research has focused on combat-
ing data race bugs by detecting shared memory accesses
without the protection of identical locks [4, 7, 9, 29, 97,
98]. Unfortunately, less attention has been paid to us-
ing locks (APIs) itself, which, as we have noted, is often
undisciplined (e.g., missing releases) and, consequently,
harbors reliability and even security problems.

The error-prone nature of lock misuses stems from
one primary factor: writing high-performance and secure
synchronization code is extremely challenging, as wit-
nessed by a long stream of literature [26, 30, 31, 104]. In
particular, the developers require intricate non-modular
reasoning regarding the concurrent semantics of the pro-
grams as well as modular reasoning about the critical re-
gions protected by lock and unlock invocations.

To demystify common lock misuses and understand
their security impacts, we performed a characteristic
study on existing CVE IDs over the past decade and
made several interesting findings. First, our investigation
reveals a general variety of errors, as shown in Table 1,
for which at least 32 CVE IDs are assigned. These bugs
characterize misuses through initializing and using locks,
considering thread interactions. Second, we inspect and
present the characteristics of these errors, facilitating bug
understanding and detection, as explained later. Third,
lock misuses can incur critical security problems, such
as denial-of-service, memory corruption, and privilege
escalation. Besides, lock misuses are often related to
other security flaws, such as data race bugs [59, 61, 63],
resulting in many exploitable vulnerabilities. For exam-
ple, by exploiting race conditions [59, 65], vulnerabil-
ities CVE-2020-10573 and CVE-2014-9748 can cause
not only a denial of service but also other unspecified
consequences. More details of our study are presented
in § 2. Therefore, it is becoming increasingly urgent to
pinpoint lock misuses.

Unfortunately, detecting lock misuses, in general, in-
herits the significant innate challenge of analyzing con-
current programs, which need to account for explosive

Table 1: Definitions on five lock misuses.

No. Misuse Pattern Bug Description Concurrency

¬ Missing lock releases A lock is not released after its effective lifetime.
 Double locking A lock is acquired twice.

® Using uninitialized locks A lock is not initialized before using it. A concurrency error
Xoccurs when the lock is initialized non-deterministically.

¯ Releasing unacquired locks A lock is released without acquiring it first. A concurrency error
Xoccurs when there is another thread holding the lock.

° Cyclic lock acquisitions Different locks are not acquired in the same order. A concurrency error
Xoccurs when each thread in a set waits for the other to release a lock.

thread interleavings together with complicated sequen-
tial reasoning. For instance, given T threads with S state-
ments each executed concurrently, the control-flow exe-
cution within a thread and thread interleavings [16, 25,
83] can generate O(T S) and O((T S)2) edges, respec-
tively. The previous data-flow analysis for concurrent
programs [7, 10, 22, 39, 83, 84] is integrated by alternat-
ing between reasoning over intra-thread and inter-thread
semantics for correctness (e.g., to avoid missing concur-
rency errors). However, on the downside, we note that
these previous approaches may reason about thread in-
terleavings irrelevant to lock misuse detection and, thus,
become inefficient for large-scale software systems.

In this paper, we present LOCKPICK, a static analysis
framework for effectively uncovering both the sequen-
tial and concurrent lock misuses listed in Table 1. Our
key insight is that sequential lock typestate violations can
help reduce unrelated concurrency reasoning. For exam-
ple, a lock is initialized non-deterministically ®, which
can be captured by tracking the lock’s state (e.g., the
lock is uninitialized after creating a child thread using the
lock). More specifically, unlike the previous approaches
that carry out the integrated concurrent data-flow anal-
ysis [7, 22, 39, 83, 84], we can separate the sequential
typestate analysis from the concurrency reasoning. As
a consequence, LOCKPICK is guided to efficiently iden-
tify the may-happen-in-parallel relations for a few state-
ments with interesting lock typestates. Furthermore, ow-
ing to the reduction in computation of thread interleav-
ings, we can employ a path-sensitive sequential data-flow
analysis to track lock typestates, which achieves high ef-
fectiveness compared to the previous FSM-based types-
tate analysis (e.g., lacking alias information [40], partial
analysis of a single translation unit [11], path-insensitive
ones [85], pattern-matching ones [1]).

Figure 1 depicts the workflow of LOCKPICK, which
consists of two key collaborative stages and synergizes
multiple techniques (i.e., pointer analysis, typestate anal-
ysis, and may-happen-in-parallel (MHP) analysis). First,
LOCKPICK performs a domain-specific typestate analy-
sis to track lock typestates at associated program loca-
tions path-sensitively. Second, guided by the discov-

On-Demand
Pointer Analysis

On-Demand
MHP Analysis

Path-Sensitive
Typestate Analysis

Concurrency-Aware
Lock Misuse Detection

ReportProgram

Figure 1: LOCKPICK framework design.

ered typestate violations on related statements, LOCK-
PICK employs concurrency-aware lock misuse detection
by lazily querying MHP relationships among statements,
reducing costly and unnecessary concurrency reasoning.

Result highlights. We thoroughly evaluated LOCK-
PICK across a broad gamut of open-source, popular, and
well-checked C/C++ systems (e.g., OpenSSL, MariaDB,
Curl). We highlight five inspiring results as follows:

1. Numerous confirmed bugs: By using LOCKPICK,
we have discovered 203 confirmed lock misuses,
among which 184 bugs have been fixed by the soft-
ware developers or our patches.

2. Many Vulnerabilities: Many confirmed bugs have
severe security impacts, resulting in system hangs,
memory corruption, and program crashes. Specif-
ically, 12 vulnerabilities in PJSIP are assigned a
unified CVE ID and marked by the developers as
having high severity. Moreover, 16 CVE IDs had
been assigned for some errors at the time of writ-
ing, accounting for approximately one-third of the
total lock-misuse CVE IDs over the past decade.

3. Considerable long-latent bugs: The 203 confirmed
errors are difficult to uncover, hiding for an average
of 7.4 years in the corresponding software.

4. Diverse bugs: At least ten bugs are detected and
confirmed for each type of lock misuses in Table 1.
In total, 30 of the 203 lock misuse errors are related
to thread interactions, incurring concurrency errors.

5. Usability: When compared to the three previous
tools SVF [86], CSA [11], and L2D2 [40], LOCK-
PICK can analyze millions of lines of code in a rea-

sonable amount of time and detect more types of
lock misuses with the lowest false positive rate.

The list of confirmed bugs is displayed online [49].
All code examples used in this paper are from the bugs
discovered by LOCKPICK, which have been safely fixed.
This paper makes the following contributions:

• A taxonomy of lock misuses with findings about
their bug characteristics and security impacts.

• A practical static detection framework, LOCKPICK,
for both sequential and concurrent lock misuses.

• A thorough evaluation of LOCKPICK’s effectiveness
compared to the state-of-the-art approaches.

2 A Characteristic Study

We first present the basic study background (§ 2.1).
Then, based on a study of existing CVE IDs, we elab-
orate on a common variety of lock misuses, investigating
their characteristics (§ 2.2) and security impacts (§ 2.3).

2.1 Background
We first describe the problem scopes, study motivation,
dataset collection, and classification criteria.
Lock discipline violations and problem scopes. Locks
are common synchronization primitives to prevent race
conditions in modern multithreaded software. Impor-
tantly, locks have explicit disciplines for initialization,
use, and destruction. Systems that violate these locking
disciplines may exhibit unexpected behaviors and poten-
tially exploitable states. Our work investigates lock dis-
cipline violations from a less-explored but critical aspect,
i.e., using locks (APIs) itself in an undisciplined way. In
contrast, most previous research [7, 9, 29, 97, 98] focuses
on identifying concurrent accesses to shared memory lo-
cations without being protected by an identical lock. We
believe these two aspects are orthogonal and comple-
mentary to ensure software reliability and security.

The lock disciplines in systems written in different
languages may differ slightly. For example, locks like
synchronized keywords in Java are coupled and can-
not incur missing lock releases. In contrast, locks like
Pthread APIs in C code are decoupled and more prone to
errors [33, 34, 38], because the locks are not necessarily
released in the reverse order in which they were acquired.
We focus on the C and C++ languages, which are widely-
adopted in low-level systems and contain abundant de-
coupled locks, such as Pthread APIs and spinlocks. To
demystify common lock misuses and understand their se-
curity impacts, we are motivated to conduct an empirical
characteristic study on existing CVE IDs.
Dataset collection and classification criteria. We
searched in the CVE database with the keywords “mu-

373 static int open_console (UI *ui){

375 if (!CRYPTO_THREAD_write_lock(ui->lock))

376 return 0;

483 }

552 static int close_console (UI *ui){

560 if (status != SS$_NORMAL) {

561 ERR_raise_data(...,status);

563 return 0;

564 }

566 CRYPTO_THREAD_unlock(ui->lock);

368 return 1;

369 }

Figure 2: A missing lock release in OpenSSL.

82 CEN64_THREAD_RETURN_TYPE gdb_thread(...) {

85 pthread_mutex_lock(&gdb->client_mutex);

88 if (gdb->flags & GDB_FLAGS_INITIAL) {

89 pthread_cond_wait(..., &gdb>c_mutex);

90 } else {

91 pthread_mutex_lock(&gdb->client_mutex);

92 }

97 pthread_mutex_unlock(&gdb->client_mutex);

143 }

Figure 3: A double locking in Cen64.

tex” and “lock”, and examined the vulnerabilities from
2010 to 2021. By focusing on the misuses of lock APIs,
initially, we found 38 related CVE IDs. Without losing
generality, we excluded three vulnerabilities strongly re-
lated to the ad-hoc knowledge of systems. For instance,
CVE-2017-8071 existed in the old Linux kernel because
a spinlock (which cannot sleep) was used without con-
sidering that sleeping was possible in a USB HID re-
quest callback. It is difficult to detect this vulnerabil-
ity automatically without such domain knowledge. Be-
sides, we excluded three vulnerabilities caused by incor-
rect interactions between locks and other primitives (e.g.,
sockets and events). For example, CVE-2015-8767 was
induced by the improper management between a lock
and a socket. As a result, we were left with 32 CVEs
to study [13], identifying five general locking discipline
violations under both sequential and concurrent circum-
stances. The five categories are shown in Table 1.

2.2 A Taxonomy of Lock Misuses

Next, we illustrate and characterize the lock misuses.

Bug characterization. First, Figure 2 shows ¬, a miss-
ing release of the lock ui->lock at Line 563. Note that
the lock ui->lock does not need to be released at Line
376, because the path condition of reaching Line 376 in-
dicates that the lock is not acquired. Thus, path-sensitive
analysis that characterizes path conditions is essential to
develop a highly precise lock-misuse detector.

Second, Figure 3 illustrates , double acquisitions of
the lock client_mutex at Line 85 and Line 91. Some
missing lock releases can lead to double locking, but they
are conceptually different. Specifically, the bug in Fig-

330 ret_t cherokee_collector_rrd_new (...){

373 re = pthread_create (..., worker_func, n);

375 ...

379 re = pthread_mutex_init (&n->mutex, NULL);

380 if (re != 0) {

382 return ret_error;

383 }

389 }

Figure 4: Using uninitialized locks in Cherokee.

ure 3 is not induced by missing lock releases. Notably,
once a lock is acquired, no matter whether the lock is
not released ¬ or acquired twice , other threads hold-
ing the same lock should wait without interacting. As a
result, both errors ¬ and occur sequentially.

Third, using uninitialized locks ® can occur when
locks are entirely not initialized or are initialized non-
deterministically. The former is self-explanatory, while
the latter can result in concurrency errors. Figure 4 shows
that the lock &n->mutex is initialized after the child
thread is created at Line 373. A concurrency error oc-
curs when the child thread uses lock &n->mutex before
the lock is initialized by the parent thread. From a types-
tate view [15], the state of &n->mutex is uninitialized at
Line 373, indicating hints to find the concurrent bug.

Fourth, in Figure 5, when Line 467 is executed, the
unheld lock trace_lock is erroneously released at Line
516 (¯). The issue can further trigger a concurrency er-
ror if a thread reaching Line 516 attempts to release the
lock trace_lock that is being held by other threads.
From a typestate angle, the lock trace_lock is not
acquired at Line 516 when category < 0 satisfies,
demonstrating the importance of being path-sensitive.

Fifth, acquisitions of different locks among concur-
rent threads should follow the same order, because cyclic
ones ° can become multi-threaded deadlocks. It is
worth noting that, while cyclic lock acquisitions within
a thread cannot result in deadlocks, such a situation can
still be considered a lock discipline violation, as argued
in some literature [71, 72], which can easily introduce
deadlocks through software evolution. Figure 6 shows
cyclic lock acquisitions in a method executed by two
concurrent threads. From a typestate aspect, (i) lock
ctxt->mutex is acquired by a thread at Line 385, wait-
ing for lock entry->mutex to be released at Line 431;
(ii) lock entry->mutex is acquired by another thread at
Line 431, waiting for lock ctxt->mutex to be released
at Line 443; and (iii) neither can make progress.

Implication I. First, in contrary to bugs ¬ and , lock
misuses ®-° can cause concurrency errors under thread
interactions. Second, it is important for a static lock mis-
use detector to resolve pointer aliasing of related vari-
ables, path-sensitively track lock typestates (e.g., ac-
quired, released), and characterize thread interleavings.

459 BIO *OSSL_trace_begin(int category){

465 category = ossl_trace_get_category(category);

466 if (category < 0)

467 return NULL;

473 if (!CRYPTO_THREAD_write_lock(trace_lock))

474 return NULL;

491 }

493 void OSSL_trace_end(int category, BIO * channel){

498 category = ossl_trace_get_category(category);

516 CRYPTO_THREAD_unlock(trace_lock);

519 }

Figure 5: Releasing unacquired locks in OpenSSL.

381 static void *extract_worker_thread_func(...){

385 pthread_mutex_lock(ctxt->mutex);

431 pthread_mutex_lock(&entry->mutex);

433 pthread_mutex_unlock(ctxt->mutex);

442 if (chunk.type == XB_CHUNK_TYPE_EOF) {

443 pthread_mutex_lock(ctxt>mutex);

444 pthread_mutex_unlock(&entry->mutex);

445 my_hash_delete(ctxt->filehash,...);

446 pthread_mutex_unlock(ctxt->mutex);

470 }

478 }

Figure 6: Cyclic lock acquisition orders in MariaDB.

2.3 Security Impacts of Lock Misuses
Many lock misuses could wreak severe havoc on security
based on their program contexts. Next, we illustrate how
these lock misuses can turn into security issues.

Security issues arising from misused locks. We be-
gin by delving into security issues by utilizing misused
locks. According to our manual inspections, the most
common security impacts of lock misuses are denial-
of-service and memory corruption. Concurrent cyclic
lock acquisitions [56, 58] and double locking [64, 69],
in particular, can cause a system to hang with dead-
locks. Besides, missing lock releases [55, 62, 66], as a
special kind of memory leak, can crash the entire sys-
tem due to memory exhaustion. In addition, releasing
unacquired locks and using uninitialized locks are the
main culprits of rendering memory corruption and sys-
tem crashes [57, 60, 61, 65, 67].

Moreover, we find that lock misuses could even re-
sult in privilege escalation and other unidentified issues
(claimed by maintainers). For CVE-2010-4210, releas-
ing an unheld lock in FreeBSD allowed local attackers to
gain elevated privileges, overwrite arbitrary memory lo-
cations, and execute arbitrary code. According to CVE-
2014-9748 in libuv, a thread attempted to release a lock
held by other threads, possibly having other unspecified
impacts by leveraging concurrency bugs.

Other security bugs arising from misused locks. It
is surprising to find that lock misuses are often related
to other security bugs, such as atomicity violations [65],
use-after-free [63], and double free [61], indirectly lead-
ing to many exploitable security issues.

Figure 7 shows another example due to a program-

98 int search_makelist(search_t *results,...){

145 pthread_mutex_unlock(&conn->lock);

146 int tmp = conn_setup(conn);

147 pthread_mutex_unlock(&conn->lock);

203 }

Figure 7: Releasing unacquired locks in Axel.

ming typo: the unlock statement at Line 145 should
be a lock statement. As a result, both unlock state-
ments at Lines 145 and 147 attempt to release an un-
held lock &conn->lock. Even worse, since the lock
&conn->lock is not acquired, an atomicity violation oc-
curs within the thread-unsafe method conn_setup. Sim-
ilarly, many prior lock-misuse vulnerabilities lead to con-
currency bugs, such as CVE-2014-9748 in Libuv, CVE-
2014-8131 in libvirt, and CVE-2020-10573 in Janus.

Implication II. Such common and severe security is-
sues make detecting lock misuses increasingly urgent.
For utility, two requirements should be satisfied. First,
a detector should be efficient for millions of lines of code
(e.g., Linux Kernel). Second, the detector should be pre-
cise. Otherwise, it would disturb developers with exces-
sive false reports and waste their precious time.

3 LOCKPICK in a Nutshell

This section first formulates the lock misuse problem
(§ 3.1). We then outline the limitations of the previous
work (§ 3.2) and the essence of LOCKPICK (§ 3.3).

3.1 Lock Misuses Formulation

Based on the implications presented in § 2, we define a
lock-specific finite-state machine model to characterize
the lock-state transitions and interactions.

Finite-state machine (FSM). Figure 8 shows the de-
signed FSM. For simplicity, we utilize three methods,
init_lock(v), lock(v), and unlock(v), respectively, to in-
dicate the initialization, acquisition, and release of a lock
object o referred to by a pointer variable v. In detail,
• Σ = {U,I,A,E,X} is a set of all possible states of a

lock. More specifically, Uninitialized (U) is the begin-
ning state, while Initialized (I), Acquired (A), Error(E),
and Exit(X) are the final states.
• When init_lock(v), lock(v), or unlock(v) is in-

voked, the lock states would move according to the FSM.
Specifically, following the locking disciplines, a lock o is
initialized via init_lock(v), with its state transiting from
U to I. Note that it is important to ensure that a lock is
safely initialized before using it. Next, if the lock o is al-
ways released after being acquired until the threads exit,
the state of the lock o would transit between states I and
A correctly, finally resulting to the state I.

lock()

unlock() lock()

unlock()
ACQINIT

ERROR EXIT

UNINIT
init_lock()

lock()

Figure 8: A finite-state machine for a single lock.

Lock misuse. However, based on the study in § 2, lock
misuse errors ¬-° could happen when the disciplines
mentioned before are violated. Formally, we characterize
the lock misuses as follows:
• ¬ (Missing lock releases): at the exit points of a

thread, the state of a lock o is acquired A, and then tran-
sits to state X because the lock is not correctly released.
• (Double locking): when a lock o is acquired again

via lock(v), the state of the lock o transits from A to E.
• ® (Using uninitialized locks): a lock o is in the state

U, and then transits to be E via using lock(v). Notably,
init_lock(v) may be concurrently executed by other
threads, so the error ® can occur non-deterministically.
• ¯ (Releasing unacquired locks): a lock o is in the

state I and incorrectly transits to E via using unlock(v),
indicating that the lock is released twice. When another
concurrent thread tries to leverage the lock (e.g., execut-
ing a statement lock(v)), the typestate violation can cause
a concurrency error, trying to release the lock that is be-
ing held by another concurrent thread.
•° (Cyclic lock acquisitions): identifying lock acqui-

sitions should keep track of the lock-state interactions.
To indicate that a thread acquires a lock o′ while holding
another lock o, we use the symbol o ; o′. In the case
of two threads, consider a statement lock(v) (v points to
o). If the state of another lock o′ is acquired A at the
statement lock(v), a lock acquisition o′ ; o is induced.
Similarly, at a statement lock(v′) (v′ points to o′), an ac-
quisition o ; o′ can be also induced, if the state of an-
other lock o is acquired A. Due to the cyclic acquisition
orders, a deadlock occurs when statements lock(v′) and
lock(v) can be run concurrently by two threads.

Notably, to reason about cyclic ones from all acqui-
sition orders, it suffices to build a lock graph [93] with
vertexes representing locks and edges denoting acquired
relations between locks. A cycle in the graph represents
cyclic acquisition orders, such as o ; o′ and o′; o.

Remark. According to the FSM shown in Figure 8 and
the implications in § 2, the lock misuses have three es-
sential characteristics. First, misuses of a single lock oc-
cur when the lock’s state transits to the wrong states E
or X. Second, reasoning about cyclic lock acquisitions
° should consider the typestate interactions on multiple
locks. Third, as shown in § 2, identifying lock mis-

uses ®-° should take concurrency semantics into ac-
count by identifying the execution relations (e.g., being
may-happen-in-parallel) between statements.

Example 3.1. We use tcreate(t, f) and t join(t) to de-
note the creation and destruction sites of a thread t. Fig-
ure 9 shows the control-flow graphs of two code snippets,
where each graph node is denoted by the symbol ni.

First, consider Figure 9(a), where the lock o1 is unini-
tialized when creating a child thread t1. Hence, a con-
currency bug ® can manifest when thread t2 executes
lock(v1) before thread t1 executes init_lock(v). Besides,
since unlock(v1) in t1 can also be executed concurrently
with lock(v1) in t2, a concurrency error ¯ can occur.

Second, consider Figure 9 (b). There are two cyclic
lock acquisition orders (°) between o1 and o2 (pointed
to by v1 and v2, respectively), which are illustrated by the
lock graph shown in Figure 9 (c). However, the code is
deadlock-free, because the statement lock(v1) in t2 must
happen before statement lock(v2) in thread t1, which is
enforced by the thread-destruction site t join(t1).

3.2 Goals and Challenges

We target the static detection of the sequential and con-
current lock misuses in Table 1, which is relatively less
explored than data race detection [5,20,33,34,44,74,90].
Lock misuses, as shown in § 2, can become concurrency
errors and security issues. However, precisely analyzing
large concurrent codebases is stunningly challenging:

• First, as illustrated in § 2 and also witnessed by the
previous work [14,19,81,96,99], path-sensitivity is
critical to embracing high precision. However, be-
ing path-sensitive may result in unaffordable perfor-
mance penalties caused by explosive program paths.

• Second, analyzing concurrent programs should
characterize the possible thread interleavings for
correctness [7, 10, 84], since ignoring the interleav-
ings can result in missing concurrency bugs. How-
ever, it is prohibitively expensive to propagate data-
flow facts across control flows induced by the expo-
nentially possible thread interleavings [25].

Even worse, when path-sensitively analyzing concur-
rent programs, the scalability issue further deteriorates.

Limitations of the past work. One line of previ-
ous research focuses on sequential typestate error de-
tection [37, 86, 88], most of which is path-insensitive
and may result in excessive false positives. Besides,
many sequential typestate analyses have other limita-
tions (e.g., lacking pointer aliasing information [40], par-
tial analysis of a single translation unit [11], and pattern-
based analysis [1]), posing limitations of missing se-
quential bugs. More importantly, they do not character-

n4: lock(v2)

n1: tcreate(t2)

n6: lock(v1)n3: lock(v1)

n5: lock(v2)

…

(b)

n1: tcreate(t2)

n2: init_lock(v1)

n4: tjoin(t2)

n5: lock(v1)n3:unlock(v1)

(a)
n6: unlock(v1)

n2: tjoin(t2)

o2o1 locks
lock acquisition relations (c)

creating t2
creating t2

Thread t1 Thread t2 Thread t1 Thread t2

Figure 9: (a) and (b) show two code snippets. Irrelevant
statements and function names are omitted. The vari-
ables v1 and v2 point to locks o1 and o2, respectively. (c)
shows a lock graph to illustrate cyclic acquisition orders.

ize thread interleavings, thus missing the capability of
finding concurrency-related lock misuses (§ 3.1).

On the other hand, existing data-flow analysis for con-
current programs [7, 10, 39, 83, 84] can be inefficient
for lock misuse detection. Take the concurrency error
® as an example. For each statement init_lock(v) in
a thread, the previous approach needs to reason about
whether other concurrent threads have been using the
lock. Unfortunately, alternating reasoning over intra-
thread and inter-thread semantics is notoriously expen-
sive [22] due to the explosive thread interleavings. More
importantly, the computation can be redundant because
not all init_lock(v) is necessary for further inter-thread
reasoning. For the example in Figure 4, we only need
to reason about the lock &n->mutex, which is initial-
ized after the creation of the child thread and could
be used without initialization. Due to the redundancy
in computation of lock misuse detection, we note that
the previous approaches either suffer from prohibitive
performance penalties [7, 83], or have to give up path-
sensitivity, thereby sacrificing precision to achieve good
scalability [10, 39, 84].

3.3 Our LOCKPICK Approach
To address the problems, we note that lock typestate vi-
olations can provide guidance to reason about thread in-
terleavings of interest. Meanwhile, such violations can
be captured without reasoning about concurrent seman-
tics (illustrated in § 2). Thus, our key idea is to separate
the sequential reasoning about typestate violations from
the concurrent reasoning of misused locks. Such a sepa-
ration has the following two salient advantages:

• Typestate violations are tracked along thread-local
data flows. Note that the tracking is a one-time ef-
fort, thus reducing the notorious performance over-
head caused by alternating between intra-thread and
inter-thread reasoning [7, 22, 39, 83, 84].

• The typestate tracking produces a “slice” of the pro-
gram states (e.g., the relevant statements, the related
path conditions, and the interesting locks’ states),
which effectively guides the subsequent analysis in
reasoning about thread interleavings of interest.

In this spirit, we present LOCKPICK, a novel static
analysis framework with two collaborative stages:

• We propose a domain-dedicated typestate analy-
sis to path-sensitively track the typestate transitions
and interactions on locks subject to our FSM shown
in Figure 8, by tracing sequential data flows.

• By using the typestate results as a guide, we identify
various lock misuses by querying may-happen-in-
parallel relations between related statements.

For example, suppose we need to detect the concur-
rency errors °. First, we identify interesting typestate as
hints, i.e., the cyclic lock acquisitions (e.g., o ; o′ and
o′ ; o). We then consider whether two locks (e.g., o
and o′) can be acquired by two concurrent threads. As
a result, we only need to reason about the related thread
interleavings between a few statements by foreseeingly
and precisely identifying the lock typestates as a guide.

4 Algorithm Design

This section first describes the designed abstract do-
mains (§ 4.1). We then elaborate our path-sensitive data-
flow algorithm to track lock typestate transitions (§ 4.2).
Finally, we present our demand-driven MHP analysis
(§ 4.3) and how to detect the lock misuses by combining
the computed data-flow facts and MHP queries (§ 4.4).

4.1 Preliminaries

Program abstraction. First, we introduce the basic no-
tions to abstract concurrent programs.

Abstract thread. An abstract thread refers to a thread cre-
ation site, such as a call to pthread_create(). More
specifically, we use tcreate(t, f) to represent the cre-
ation of a thread t executing procedure f (f ∈ F), and
t join(t) to denote the destruction site of the thread t. Ab-
stract threads are modeled context-sensitively so that a
thread, t ∈ T, always refers to a context-sensitive fork
site, i.e., a unique runtime thread. Following much pre-
vious work [7, 44], we create two different threads with
identical attributes for a fork site allocated in a loop.

Inter-thread control-flow graph. A conventional control-
flow graph can be tailored to an inter-thread control-flow
graph ICFG by accounting for thread creation sites. Fol-
lowing previous work [33, 34], thread creation edges are
added from the creation sites to the entry nodes of func-
tions executed by created threads, thereby characteriz-

Abstract thread t ∈ T Statements s ∈ S
Memory objects o ∈O Program variables v ∈ V

Points-to results E := V→ 2O

Lock typestates ty ∈ Σ := {U,I,A,E,X}
Data-flow facts d ∈ D := 2O×Σ×Φ

MHP results M := S→ 2S

Figure 10: Abstract domain.

ing the parent-child thread relationships. More specif-
ically, ICFG comprises CFG of each thread t, denoted
as CFGt . Each CFGt is in a standard form, which is a
directed graph denoted as CFGt = (N,E). The nodes N
consist of statement nodes and the merge nodes of two
predecessors. In addition, the directed edges E represent
intra- or inter-procedural control flows between nodes.

Abstract domain. Following the formulation of lock
misuse in § 3, we present a dedicated abstract domain
to precisely capture lock typestate transitions and inter-
actions, and effectively reason about the execution rela-
tionships between related statements.

As shown in Figure 10, v ∈ V is a program variable,
while o ∈ O is a memory object, such as a lock object.
We use a demand-driven pointer analysis (§ 5), which
can lazily resolve the points-to set E(v) of a given vari-
able v. By using E, the subsequent analysis can query the
set of accessed lock objects at a related statement, e.g.,
lock(v). At a high level, to effectively detect lock mis-
uses, we keep track of the following facts for the specific
control-flow nodes in CFGt of each thread t:
• Typestates of lock objects: data-flow facts of a lock

object are a set of tuples, which are denoted as d ∈ D :=
2O×Σ×Φ. For example, the set {(o,A,ϕ1),(o,E,ϕ2)} at
the node of CFGt indicates that the lock o has two dif-
ferent typestates A and E qualified by the path conditions
ϕ1 and ϕ2, respectively.
• May-happen-parallel (MHP) relations between

statements with specific lock typestates: we resolve the
MHP relations M(s) between different statements us-
ing an on-demand MHP analysis [43]. For example,
M(lock(v)) denotes the set of statements that may be ex-
ecuted concurrently with the statement lock(v).

Example 4.1. In Figure 9 (a), by tracking the types-
tates of the lock o1 at the node n1, the data-flow fact
(o1,U,True) is produced as the lock o1 is uninitial-
ized U at n1. The data-flow fact at the node n5 then
becomes (o1,E,True), because no initialization state-
ments are reachable from the node n5. After finding
such typestate violations, we can use the MHP analy-
sis to identify the statement init_lock(v) in thread t1, i.e.,

n19

1. void foo(){// t1
2. tcreate(t2, bar);
3. lock(v1); // o1
4. lock(v2);
5. if (a=1){
6. unlock(v1);
7. }
8. tjoin(t2);
9. }
10.void qux(){…;}

11. void bar(){// t2
12. lock(v2); // o2
13. lock(v1);
14. if (b=1){
15. unlock(v1);
16. }else{
17. unlock(v1);
18. }
19. qux();
20. }

n6

n12n2

n3

n10

n13

n15

n18

n17n4

n7

n9

(o1, I, True)
(o2, I, True)

(o1, A, True)
(o2, I, True)

(o1, I, a=1)
(o2, A, a=1) (o1, I, a=1)

(o1, A, a≠1)
(o2, A, True)

(o1, I, True)
(o2, A, True)

(o1, A, True)
(o2, A, True)

(o1, I, b=1)
(o2, A, b=1)

(o1, I, True)
(o2, A, True)

(o1, I, True)
(o2, X, True)

Exit

(o1, I, a=1)
(o1, X, a≠1)
(o2, X, True)

thread creation

Exit

(o1, I, b≠1)
(o2, A, b≠1)(o1, A, a≠1)

(o2, A, a≠1)

Figure 11: the buggy code and its ICFG with the computed data-flow facts. Irrelevant nodes in ICFG are removed.

init_lock(v) ∈ M(lock(v1)). By doing so, we can dis-
cover a concurrency error ® caused by the lock o1 that is
initialized non-deterministically.

The abstract domain has two salient advantages, re-
specting the bug characteristics discussed in § 2. First,
the data-flow facts distinguish the locks’ typestates along
different paths, enabling precise typestate violation de-
tection. Note that the path conditions can be solved
lazily until the stage of bug detection. Second, using
the typestate results as a guide, we can query MHP re-
lations among statements with typestate violations, thus
reducing redundant thread interleaving reasoning. In par-
ticular, we do not need an independent and prohibitive
thread-escape analysis like in the prior work [7, 34, 44],
because locks are commonly shared among threads.

Next, we deliberate on two specific challenges:
1. How to design efficient data-flow analysis to track

the lock typestates (§ 4.2) and MHP analysis to
identify MHP relations among statements (§ 4.3).

2. How to synergize the lock typestates and MHP re-
sults for effective lock misuse detection (§ 4.4).

4.2 Typestates Analysis for Locks
Prior to detecting lock misuses, we perform a path-
sensitive data-flow analysis to track the typestates of
locks, which facilitates the subsequent analyses. We or-
chestrate the key steps in our typestate algorithm, includ-
ing the intra- and inter-procedural processes.

At a high level, Algorithm 1 traverses each CFGt (t ∈
T) and computes the data-flow facts (from the domain
2O×Σ×Φ) on the related CFG nodes. On each node, we
iteratively update a map from the incoming data-flow fact
to their corresponding outgoing fact, propagating the fact
to the next nodes. Without losing generality, we use INn
and OUTn to denote the incoming and outgoing data-flow
facts on a node n, respectively. Besides, we use prev(n)

Algorithm 1: Path-sensitive lock typestate analysis.

1 Procedure TypeStateAnalysis():
2 T hreadlist := T hreadlist ∪{t0} // main thread

3 INno := {(o,U,True)|o ∈O∧o is a lock object};
4 while T hreadlist 6= /0 do
5 retrieve a thread t from T hreadlist;
6 DataFlowAnalysisForThread (CFGt);

7 Function DataFlowAnalysisForThread(CFGt):
8 Worklist←↩ add the entry node n0 of CFGt ;
9 while Worklist 6= /0 do

10 if n is a thread creation tcreate(t ′, f) then
11 T hreadlist := T hreadlist ∪{t ′};
12 else if n is init_lock(v), lock(v), unlock(v) then
13 OUTn := Fstmt(n, INn);

14 else if n is a merge node, n1,n2 ∈ prev(n) then
15 OUTn := Fseletive(n, INn1 , INn2);

16 else if n is a callsite cs invoking method f then
17 label each d with (cs and enter f ;

18 else if n is a return node of method f then
19 label each d with)cs and return to callers;

20 propagate data-flow facts OUTn to next nodes;

and cond(n) to denote the predecessors and branch con-
dition of a node n, respectively.

Handling of locking statements. In detail, we first set
the data-flow facts of all locks as uninitialized U at the
entry node of ICFG. When passing a node n that can
change the states of locks, i.e., init_lock(v), lock(v), or
unlock(v), we generate the corresponding outgoing ones
OUTn based on the incoming data-flow facts INn by us-
ing the rules shown in Figure 12. Specifically,
• First, we enumerate each data-flow fact in INn and

identify the states of each lock o (o ∈ E(v)) by querying
the points-to set information.
• Second, we update the state of lock o regarding

Fstmt(n, INn)

n ∈ {init_lock(v), lock(v),unlock(v)}
∀(o, ty,ϕ) ∈ INn,o ∈ E(v)

ϕ1 := cond(n)
OUTn∪{Ftran(n,d)}

Ftran (init_lock(v),(o, ty,ϕ)) =

(o,I,ϕ ∧ϕ1) if ty = U
(o,E,ϕ ∧ϕ1) if ty = A
(o,E,ϕ ∧ϕ1) if ty = I.

Ftran (lock(v),(o, ty,ϕ)) =

(o,E,ϕ ∧ϕ1) if ty = U
(o,E,ϕ ∧ϕ1) if ty = A
(o,A,ϕ ∧ϕ1) if ty = I.

Ftran (unlock(v),(o, ty,ϕ)) =

{
o,I,ϕ ∧ϕ1) if ty = A
(o,E,ϕ ∧ϕ1) if ty = I.

Figure 12: Rules for handling the statements in Alg. 1.

Fselective(INn1 , INn2)

∀d1 := (o, ty1,ϕ3) ∈ INn1

∀d2 := (o, ty2,ϕ4) ∈ INn2{
OUTn∪{d1,d2} if ty1 6= ty2

OUTn∪{Fmerge(d1,d2)} else

Fmerge(d1,d2) = (o, ty1,ϕ3∨ϕ4)←↩ (o, ty1,ϕ3),(o, ty2,ϕ4).

Figure 13: Rules for handling merge nodes in Alg. 1.

the kinds of statements, following the FSM’s transi-
tions shown in Figure 8. For example, after analyzing
unlock(v), a lock o with state A becomes I. In addition,
we encode the corresponding branch condition in the
data-flow facts for high precision. When the lock’s state
changes in the branch, a branch condition is encoded.
Specifically, we update the path conditions in the data-
flow facts by taking the conjunction of the branch condi-
tion ϕ1 and the previous path conditions ϕ , as ϕ ∧ϕ1.

Example 4.2. In Figure 11, for simplicity, we assume
that all locks are initialized. When computing data-flow
facts for lock(v1) at n3, the state of lock o1 becomes
acquired A, i.e., (o1,A,True). For lock(v2) at n4, the
state of lock o2 becomes acquired A, i.e., (o2,A,True).
For unlock(v1) at n6, the fact (o1,A,True) becomes
(o1,I,a = 1), because lock o1 is released at the branch.

Handling of merging nodes. We proceed to discuss
how to handle the merge nodes precisely and efficiently.
Consider two incoming data-flow facts at a merge node.
On the one hand, indiscriminately merging them into
one (e.g., using the join operation in conventional data-
flow analysis) can result in precision loss. For example,
in Figure 11, at node n7, merging states of the lock o1
coming from different branches yields (o1,A or I,True),
which cannot precisely figure out in which branches the
lock o1 is released or acquired. On the other hand, always

distinguishing the facts from different branches without
merging can gradually lead to explosive data-flow facts,
as in disjunctive abstract domains [24, 77].

Instead, as shown in Figure 13, we merge the data-
flow facts d1 and d2 selectively, when the facts of the
same lock have the same typestate. Note that these data-
flow facts are redundant, indicating the same state of an
identical lock. Specifically, when merging two data-flow
facts into one, we take the disjunction of the path condi-
tions to qualify the incoming facts. Thus, our data-flow
analysis is precise without indiscriminately joining and
is efficient with the selective merging.

Example 4.3. Consider the merge node n7 in Figure 11.
The data-flow facts of o1 at the two predecessors n4 and
n6 are (o1,A,a 6= 1) and (o1,I,a = 1), respectively. We
do not merge the two facts of o1 because the lock type-
states differ. In constrast, the data-flow facts of o2 at
n4 and n6 are (o2,A,a 6= 1) and (o2,A,a = 1), respec-
tively. We merge the two facts to one data-flow fact
(o2,A,True) since the lock’s state remains the same.

In our data-flow analysis, we handle loops, based on
the practical observation that most double locking or un-
locking errors manifest themselves by the second itera-
tion. Thus, loops are unrolled into two iterations.
Inter-procedural analysis. CFL-reachability [76] is
used to reach context-sensitive, which is orthogonal to
our contributions. Thus, we briefly describe the process.
In Algorithm 1, each data-flow fact is assigned a string
to validate the calling contexts. When propagating a fact
along a call edge at a call site cs, we append a left paren-
thesis (cs to the string. When propagating a fact back to a
call site cs along a return edge, we append a right paren-
thesis)cs to the string. The data-flow fact propagation is
valid (in terms of context sensitivity) if strings between
calls and returns have matched parentheses.

4.3 Demand-Driven MHP Analysis
After computing the sequential data-flow facts, we need
to infer the execution relations between statements of in-
terest for the lock misuse detection (§ 4.4). To this end,
we tailor the prior MHP analysis [43, 44], which uses a
static happens-before graph (HBG) to characterize thread
synchronizations. In particular, given a statement s, an
MHP analysis computes the set of statements, M(s), that
may be executed concurrently with s.

First, we use Figure 14 to illustrate the HBG construc-
tion. Intuitively, a directed edge in an HBG indicates the
happens-before (HB) relation between statements. Thus,
we can build the HBG as follows. For each thread cre-
ation statement tcreate(t, f), we add an HB edge from
the statement to the entry point of t. For each thread de-
struction statement t join(t), we add an HB edge from

s1: lock(v1);
s2: tcreate(t2, foo);
s3: lock(v2);
s4: unlock(v2);
s5: tjoin(t2);
s6: unlock(v1);

s7: tcreate(t3,bar);
s8: …
s9: tjoin(t3);

s10: lock(v2);
s11: unlock(v2);

Thread t1 Thread t2 Thread t3

Thread create HB edges
Thread destruction HB edges

Figure 14: An happens-before graph for MHP relations.

the exit point of t to the statement. Besides, HB relations
within a thread characterize their control-flow orders.

Based on the HBG, we can query the MHP relations
between different statements. Specifically, if two ver-
texes (statements) in an HBG are not reachable, they
share the MHP relation, and vice versa. For example,
in Figure 14, statements s1 and s11 are not MHP (s1 hap-
pens before s11), because they are reachable in the HBG.
Also, statements s4 and s11 are MHP because they are
unreachable. As a result, given a statement s to collect
M(s), it suffices to collect the set of statements, each of
which is unreachable to s in the HBG. More technical
details can be found in the previous work [44, 102].

Moreover, we tailor the approach [44] by removing
unrelated statements from an HBG since, for lock misuse
detection, it suffices to reason about the MHP relations
for the related statements (i.e., init_lock(v), lock(v), or
unlock(v)). By using the simplified graph, we can avoid
traversing irrelevant vertexes for computing MHP rela-
tions, thereby improving the performance.

Specifically, recall the implications in § 2. Armed with
the HBG, we can combine typestate results and MHP re-
lations for efficiently detecting lock misuses, reducing
the unnecessary concurrency computation.

Example 4.4. In Figure 9 (b), the data-flow fact at n4
is (o1,A,True), denoting the lock o2 is acquired at n4
with holding lock o1. Similarly, the data-flow fact at n6 is
(o2,A,True). Thus, LOCKPICK identifies the acquisition
orders o1 ; o2 in t1 and o2 ; o1 in t2, forming a cyclic
order as shown in Figure 9 (c). Next, we query the MHP
relations to identify that lock(v2) in thread t1 cannot be
MHP with lock(v1) in t2, i.e., lock(v2) /∈M(lock(v1)).

4.4 Lock Misuse Bug Detection

This section describes how to detect lock misuses within
a thread (§ 4.4.1) and between threads (§ 4.4.2). Essen-
tially, our basic idea is to examine data-flow facts on the
related CFG nodes, identify the statements with types-
tate violations of interest, and query the MHP relations
between the statements to discover concurrency bugs.

4.4.1 Detecting Lock Misuses within a Thread

First, as specified in § 2 and § 3.1, lock misuses ¬ and
 only occur thread-locally. As a result, we only need
to examine sequential typestate violations by leveraging
the results of the data-flow analysis (§ 4.2).
Missing lock releases ¬. We examine each outgoing
data-flow fact at the exit node n of CFGt (t ∈ T) to
figure out the data-flow fact (o,X,ϕ) that transits from
Acquired (A) to Exit(X), disclosing a missing lock re-
lease. More importantly, we need to solve the corre-
sponding path condition ϕ to achieve path sensitivity,
which is similar to checking the following errors.
Double locking . For each statement lock(v), we ex-
amine each outgoing data-flow fact of a lock o (pointed
to by v) whose state is Error(E). Note that the state E of
the lock o at the statement lock(v) can indicate errors ei-
ther or ®. To identify the double locking, it suffices
to examine the incoming data-flow facts to examine the
transition history of FSM from Acquired (A) to E.

Example 4.5. In Figure 11, we examine the data-flow
facts at the exit nodes n9 and n10 to detect the miss-
ing lock release ¬. For instance, the data-flow fact
(o2,X,True) at n9 indicates a lock-leak bug ¬.

Overall, the lock misuses ¬ and are easier to detect
without taking thread interactions into account.

4.4.2 Detecting Lock Misuses between Threads

Detecting lock misuses ®-°, on the other hand, should
characterize thread interleavings between statements and
memory interactions on lock objects. For instance,
• A lock can be initialized after creating a thread that

may use the uninitialized lock;
• A thread may hold a lock that is released by another

concurrent thread without acquiring the lock first;
• Concurrent threads can acquire different locks in an

interdependent order, waiting forever for each other.
However, it is stunningly challenging to detect mis-

used locks between concurrent threads. Our key idea is
that the computed typestate violations allow us to avoid
checking all possible thread interleavings; we only need
to query MHP relations between the statements where
the data-flow facts encode lock typestates of interest. The
detection of errors ®-° are detailed below.
Using uninitialized locks ®. For each statement lock(v)
at the node n of CFGt , we examine the outgoing data-
flow facts in OUTn to identify a lock o, which (i) is
pointed to by variable v and (ii) has an erroneous type-
state E transiting from Uninitialized (U). More specif-
ically, there could be two causes: (i) the lock o is com-
pletely uninitialized; (ii) the lock o is initialized after cre-
ating a child thread t, causing a non-deterministic error.

To uncover the concurrency errors, we disclose a state-
ment init_lock(v′) such that (i) variable v′ points to the
lock o, and (ii) init_lock(v′) can be MHP with lock(v).

Thus, LOCKPICK identifies both causes of using unini-
tialized locks and generates the corresponding reports for
developers to understand the errors under concurrency.

Releasing unacquired locks ¯. For each statement
unlock(v), we examine each outgoing data-flow fact of
lock o (pointed to by v) whose state is E. Either sequen-
tial or concurrent errors could be caused, depending on
whether there could be another concurrent thread hold-
ing the same lock o. To discover the concurrency errors,
we identify a statement lock(v′) so that (i) the variable v′

points to the lock o, i.e., o ∈ E(v′) and (ii) the statement
is MHP with unlock(v), i.e., lock(v′) ∈M(unlock(v)).

Cyclic lock acquisitions °. We identify typestate inter-
actions on locks to capture each lock-acquisition order.
Specifically, for lock(v), we identify each acquisition or-
der o′ ; o between other locks o′ (not pointed to by v)
and the lock o (pointed to by v). To this end, we examine
the data-flow facts of other locks o′ whose state is A, i.e.,
(o′,A,ϕ), to identify each lock-acquisition order o′; o.

Next, to derive the cyclic ones ° from all lock acqui-
sition orders, we construct a lock graph [8, 93], where a
cycle indicates the cyclic lock acquisitions.

Finally, we query the MHP results to identify whether
the cyclic acquisitions can occur among different concur-
rent threads. Take a common two-thread deadlock as an
example (more than two threads are similar). We exam-
ine whether two statements lock(v) and lock(v′) (where
the two acquisitions, o ; o′ and o′ ; o, are induced,
respectively), can be run concurrently, i.e., lock(v′) ∈
M(lock(v)), thereby causing a concurrency error.

Example 4.6. In Figure 11, the data-flow fact at n4 is
(o1,A,True), revealing an acquisition order o1 ; o2.
Also, the data-flow fact at n13 is (o2,A,True), deriv-
ing an acquisition order o2 ; o1. In a constructed lock
graph, the acquisitions o1 ; o2 and o2 ; o1 form a cy-
cle. Next, we query MHP relations to decide whether
statements at n4 and n13 can be MHP. If so, the cyclic
acquisitions can cause a concurrent deadlock.

Summary. For effective lock misuse detection, LOCK-
PICK is armed with a synergetic combination of points-
to facts, lock typestates, and MHP relations. Compared
to the previous work [7, 22, 39, 83, 84], LOCKPICK has
two noteworthy benefits. First, our path-sensitive types-
tate analysis is easier to scale up without initially consid-
ering thread interleavings. Second, LOCKPICK instead
defers the thread interleaving reasoning until statements
with lock typestate violations are discovered, enabling
our MHP analysis to focus on the related statements.

5 Implementation

We have built LOCKPICK as a static bug-finding tool
on top of the LLVM infrastructure and the Z3 SMT
solver [101]. LOCKPICK can analyze many decou-
pled locks commonly used in C/C++ programs, such as
Pthread APIs, spinlocks, and std::mutex. Next, we will
delve into some interesting implementation details.

Pointer analysis. Our approach requires pointer alias-
ing information (e.g., identifying the points-to set of lock
variables and thread pointers, and encoding path con-
straints). In practice, the locks could act as fields in
structures, be passed in functions as parameters, and be
reassigned at different program locations. To provide
the precise points-to sets of pointers, we use the flow-
, context-, and field-sensitive value-flow-based pointer
analysis [81]. More specifically, we use may-information
to identify lock acquisitions and must-information to
identify lock releases [8, 33, 34].

Path conditions. The path conditions are encoded as
first-order logic formulae over bit-vectors, which are
solved by the Z3 SMT solver. A variable is modeled as a
bit vector, of which the length is the bit width (e.g., 32) of
the variable type (e.g., int). Note that our bit-vector con-
straints can handle many language constructs by utiliz-
ing pointer aliasing information (e.g., memory accesses,
arithmetic computation, method calls) [3, 95].

Soundiness. Since our tool aims to detect bugs rather
than perform rigorous verification, we make a few rea-
sonably unsound choices (i.e., soundy [47]), following
much work [7, 52, 81, 85]. To do so, we can thus over-
come many of the inherent limitations of static analysis,
ensuring our tool is both scalable and precise. Next, we
summarize the unsound sources. First, loops are unrolled
twice. However, we find that the loop handling is effec-
tive because the double locking or unlocking can still be
captured by LOCKPICK. For example, we have found 53
real lock misuses in loops. Second, our pointer analy-
sis does not handle inline assembly or pointer arithmetic.
The analysis handles loops by analyzing two iterations.
As stated in the work [2], “A C pointer alias analysis
cannot be strictly sound, or else it would be very impre-
cise.” To improve precision, we manually model some
standard C libraries like memset and memcpy, which are
important for the points-to analysis, but we have not yet
modeled standard template libraries like std::vector and
std::map. In § 6, we will investigate the effectiveness of
these design choices by comprehensively evaluating pre-
cision, performance, and recall.

6 Evaluation

This section investigates two research questions:

34

124

10
20

15 ①
②
③
④
⑤

33

91
39

40 Y≤1

1<Y≤5

5<Y≤10

Y>10

(a) (b)
Figure 15: (a) and (b) show the distributions of bug type
and hidden time (Year) for the 203 confirmed bugs, resp.

• RQ1: How effective and practical is LOCKPICK
at uncovering lock misuses in mature open-source
software systems (§ 6.1)?

• RQ2: How does LOCKPICK perform compared to
the state-of-the-art tools (§ 6.2 and § 6.3)?

All the experiments were finished on a computer with
two 20-core Intel(R) Xeon CPU@2.20GHz and 256GB
physical memory running Ubuntu-16.04.

6.1 Effectiveness on Bug Hunting
From July 2021 to December 2021, we ran LOCKPICK
extensively to uncover lock misuse bugs and vulnerabil-
ities in many open-source systems. The programs we
evaluated are from the benchmarks analyzed by much
previous static and dynamic bug-finding work [7, 21, 28,
38, 44, 81, 94, 99]. Thus, these systems are regarded as
prevalent, essential, and thoroughly examined.

Confirmed bugs. At the time of writing, we had used
LOCKPICK to find 203 developer-confirmed lock mis-
uses in over eighty software systems. Figure 15 shows
the distribution of different lock misuses. We make two
observations. First, all the varieties of lock misuses iden-
tified in our empirical study are prevalent, as LOCKPICK
can uncover at least ten errors for each variety. Second,
through our manual inspection, we find that 30 lock mis-
uses of the 203 confirmed lock misuse bugs can result in
concurrency errors. The links to bug issues and discus-
sions are listed online [49].

Moreover, we emphasize that the found lock misuses
are difficult to detect, as they have remained hidden for
an average of 7.4 years. Moreover, more than 40 bugs
were introduced more than a decade ago. For example,
LOCKPICK detected a 21-year-old bug in FreeBSD [23],
as shown in Figure 16. Notably, many scanned pro-
grams (e.g., OpenSSL, MariaDB, and Apache HTTPd)
have been regularly checked by some commercial static
analyzers such as Coverity, Fortify, etc. None of these
bugs were detected by those industrial tools, providing
strong evidence of LOCKPICK’s effectiveness.

In addition to actively reporting bugs and potential
vulnerabilities, we also prepared patches for developers
to ease their fixes. At the time of writing, 184 lock mis-

93 static CLIENT * clnt_com_create(...){

119 mutex_unlock(&rpcsoc_lock);

121 sport = pmap_getport(raddr, (u_long)prog,...);

123 if (sport == 0) {

124 goto err;

125 }

127 mutex_lock(&rpcsoc_lock);

155 err:

158 mutex_unlock(&rpcsoc_lock);

160 }

Figure 16: A 21-year-old bug in FreeBSD.

629 static pj_status_t codec_open(...){

638 pj_mutex_lock (opus_data->mutex);

769 if (err != OPUS_OK) {

771 return PJMEDIA_CODEC_EFAILED;

772 }

790 pj_mutex_unlock (opus_data->mutex);

791 return PJ_SUCCESS;

792 }

Figure 17: A lock misuse vulnerability in PJSIP.

uses had been fixed. The developers highly appreciated
our bug-finding and fixing efforts with numerous com-
ments like “nice catch!”, “excellent find!”, “thank you!”.

Security impacts. We not only report bugs but also in-
vestigate their security impacts with the developers. We
had received 16 CVE IDs at the time of writing. Next,
we will conduct case studies on two vulnerabilities.

LOCKPICK detected 12 double locking bugs in various
modules of PJSIP [68], a well-known multimedia com-
munication library. Figure 17 illustrates one of the bugs
induced by the missing lock releases at Line 771. When
the method codec_open is invoked twice, the lock is
double acquired. The vulnerabilities can cause system
deadlocks and be exploited to launch a DoS attack, af-
fecting all users of PJSIP. Unfortunately, these vulner-
abilities are long-standing, so all versions up to and in-
cluding 2.11.1 are affected. Initially, we opened an issue
to report these bugs, which were quickly removed by the
developers. They reminded us that these vulnerabilities
were so severe that we should report them via encrypted
emails [73]. Finally, these vulnerabilities across different
modules are assigned a unified CVE ID [68].

We detected a deadlock of cyclic lock acquisitions
spreading across seven versions of MariaDB [53] (one
of the most popular open source relational databases),
shown in Figure 6. Developers claim that the flaw can
be exploited to deadlock the receiving process via two
steps: (i) streaming malformed data to xbstream and (ii)
using the same pathname multiple times in a stream with
timing delays. They were extremely concerned about
this concurrency vulnerability, so five developers grad-
ually joined the conversation. Due to the effectiveness
of LOCKPICK in vulnerability hunting, two developers
were curious about our tool and asked, ”Which scanner?”

0 750

Cherokee

Curl

PJSIP

OpenSIPS

Wolfssl
CSA
L2D2
SVF
Lockpick

0 22000

OpenSSL

MySQL

MariaDB

FreeBSD

Linux

500 10000Time(s)

Figure 18: Time costs of LOCKPICK versus other tools.

6.2 Comparison with Previous Tools

We compared LOCKPICK against three open-source,
popular, and actively-maintained bug-finding tools.
• SVF [86] detects source-sink bugs by tracking value

flows of objects along def-use chains. We revised its
path-insensitive memory leak detector, SABER [85], to
enable the sequential lock misuse detection of ¬ and .
• L2D2 [40] is a context- and path-insensitive tool

that improves the industrial-strength bug finding tool IN-
FER [27]. In addition, L2D2 handles pointer aliasing in
analyzed programs based on syntactic expressions [6].
According to INFER developers, INFER only supports
C++ programs while L2D2 extends INFER to detect er-
rors , ¯, and ° in both C/C++ programs.
• CSA [11] is a symbolic executor with the limited

function inlining [99] based on a single-file analysis.
We used its Pthread-based API misuse checker (i.e., al-
pha.unix.PthreadLock) to detect errors ¬ and .

Benchmarks. To assess the time costs and precision, we
chose ten popular and security-sensitive programs with a
total of 35.8 MLoC, covering a wide spectrum of applica-
tions, such as operating systems, servers, databases, SS-
L/TLS libraries, and data transfer/multimedia communi-
cation tools. To assess the recall, we chose 26 vulnera-
bilities out of the 32 CVEs used in our study. Note that
we excluded six vulnerabilities in the software written in
other languages (e.g., Java, Rust).

Time cost. Figure 18 shows the comparison of time
costs. We observe that SVF and CSA cannot finish an-
alyzing large programs (e.g., Linux Kernel) in less than
six hours. On the other hand, LOCKPICK’s time costs
are comparable to that of L2D2; LOCKPICK is slower
than L2D2 only in six software projects. In conclusion,
LOCKPICK can complete its analysis of the Linux Kernel
(with approximately 16 MLoC) in 5.36 hours, which is
efficient and practical.

Precision. Table 2 displays the results of bug reports. We
manually validated whether each warning was genuine.
However, we were unable to inspect more than 200 re-
ports, so we selected 100 reports at random to review. To
sum up, the FPR of SVF, L2D2, CSA, and LOCKPICK
is approximately 85.1%, 99.2%, 93.7%, and 27.5%, re-

Table 2: Results on bug hunting among tools.

Project KLoC SVF L2D2 CSA LOCKPICK
#FP #R #FP #R #FP #R #FP #R

Cherokee 55 3 6 99%† 483 22 26 1 5
Curl 135 3 4 0 0 0 0 0 2
PJSIP 434 32 43 98%† 505 0 2 2 15
OpenSIPS 477 25 55 0 0 0 0 5 40
OpenSSL 490 66 68? 0 0 0 0 2 6
WolfSSL 944 16 20 3 3 0 1 3 11
MySQL 4,152 0 0? 100%† 1,157 95 99? 3 10
MariaDB 4,697 96%† 141? 100%† 4,993 100%† 229? 9 27
FreeBSD 8,457 66 81 NA NA 0 0 12 31
Linux 15,987 88%† 328? NA NA 0 0 19 57
FPR — 85.1% 99.2% 93.7% 27.5%
#R denotes reports; ? means the analyzer runs out of the time budget (six hours).
NA means the analyzer fails to compile the projects with its old compiler.
† means we compute FPR based on 100 reports among the excessive reports.

spectively. The FPR results indicate that LOCKPICK is
the most precise. The reasons for the high precision of
LOCKPICK are discussed later. At the time of writing,
86 bugs in the ten systems have been confirmed by de-
velopers. In conclusion, compared to L2D2, SVF, and
CSA, LOCKPICK can uncover various lock misuses in
large-scale systems in a reasonable amount of time and
with a low rate of false positives.

There are two representative false-positive cases re-
ported by the other tools (i.e., SVF, L2D2, and CSA).
First, in Figure 19, when ignoring the path conditions
at Lines 195 and 325, the other tools reported a missing
lock release at Line 326, which is spurious because the
lock ipt->start_lock is not acquired under the con-
dition ipc.opt==IDLE_PROF_OPT_NONE. Second, they
reported a missing lock release at Line 558, which is
spurious since the lock &g_Hwlock is not acquired when
ret 6= 0. By virtue of its path-sensitive typestate analysis,
LOCKPICK is resistant to these false positives.
Hunting known vulnerabilities. To examine the re-
call, we also assess whether LOCKPICK can detect the
known 26 CVE vulnerabilities in C/C++ programs. Ac-
cording to our results, LOCKPICK can find all the CVEs
in their corresponding historical versions. Overall, 153
unique reports were generated by LOCKPICK, with only
46 false positives induced. We observed that, in addition
to the known CVEs, many found bugs have been fixed
by developers in the newest version. Compared to SVF
and CSA, 11 and 20 vulnerabilities, respectively, were
missed, inducing approximately 90% and 98% FPRs.
Excluding 20 vulnerabilities in software (i.e., Linux ker-
nel, FreeBSD, and Xen) that L2D2 failed to run due
to the compiling problems, L2D2 only detected three
known ones out of six vulnerabilities, resulting in about
98% FPR. The reasons for their limited bug-finding ca-
pability are discussed later. Based on these impressive
results, we believe that LOCKPICK is effective and prac-
tical in vulnerability hunting before production runs.
Cross-checking bug reports. In addition to comparing
precision and recall, we cross-checked their bug reports
to investigate why LOCKPICK is effective. We make four

183 void fio_idle_prof_init(void){

195 if (ipc.opt == IDLE_PROF_OPT_NONE)

196 return;

260 pthread_mutex_lock(&ipt->start_lock);

273 }

320 void fio_idle_prof_start(void){

325 if (ipc.opt == IDLE_PROF_OPT_NONE)

326 return;

331 pthread_mutex_unlock(&ipt->start_lock);

333 }

400 ...

549 int IntelQaInit(void* threadId){

555 ret = pthread_mutex_lock(&g_Hwlock);

556 if (ret != 0) {

558 return BAD_MUTEX_E;

559 }

560 }

Figure 19: False positives reported by other tools.

observations. First, we find that LOCKPICK can detect all
real bugs reported by other tools, reaching high precision
without sacrificing bug finding capability. Second, a key
reason for the spurious reports in other tools is infeasible
program paths, illustrated previously by using Figure 19.
We observe that, in practice, developers have a zero-
tolerance policy for excessive false positives, creating
a significant obstacle to finding real bugs. Third, CSA
can miss many real bugs due to the limited inlining by
only analyzing a single file and without modeling many
locks (e.g., the spinlocks in Linux Kernel, FreeBSD), and
L2D2 can miss many real bugs due to its reliance on
syntactic expressions to reason pointer aliasing. Fourth,
they are incapable of detecting various types of lock mis-
uses since they do not characterize concurrency. For ex-
ample, in Table 2, 52 lock misuse bugs are related to
concurrency, which are missed by SVF. In conclusion,
LOCKPICK has good precision and bug-finding capabili-
ties, effectively mitigating the performance issue caused
by characterizing concurrency semantics.

Reasons for misuses. By inspecting the confirmed bugs,
we have identified several common causes of lock mis-
uses, which could be helpful for avoiding misusing locks.
First, missing lock releases ¬ often occurs in error-
handling branches. Specifically, a buggy function of-
ten acquires a lock, encounters error conditions, and re-
turns to callers without releasing the holding lock. Sec-
ond, double locking bugs are often introduced by ty-
pographical errors, in which the corresponding unlock
statements are written as lock statements. Third, using
uninitialized locks ® is caused by initializing locks in
a non-deterministic manner (e.g., after creating a child
thread using the locks). Fourth, releasing unheld locks ¯
is commonly induced by (i) the inconsistent branch con-
ditions between lock acquisitions and releases and (ii)
inconsistent acquisitions and releases of locks in loops.
Finally, cyclic lock acquisitions ° are caused by using
locks in a nested way, in which the nested locks are ac-

quired and released in a disorganized manner.

6.3 Ablation Study
Finally, we conduct an ablation study based on the
benchmarks shown in Table 2 to shed more light on
the inner workings of the LOCKPICK framework. More
specifically, we performed two experiments to dig into
the actual details and analyze the intermediate artifacts
of the lock-misuse analysis. First, we investigate the im-
portance of being path-sensitive. Compared to disabling
its SMT solving, LOCKPICK can significantly reduce an
additional 40.4% of false positives with only a 19.2 % in-
crease in time costs. Second, we examine the importance
of reasoning concurrency. Our results show that LOCK-
PICK can detect 22.2 % more concurrency-related lock
misuse bugs at 12.6% higher time costs than when the
demand-driven concurrency analysis is disabled. Con-
sider the promising bug-finding results of LOCKPICK
shown in § 6.1 and § 6.2. The additional time costs are
reasonable and acceptable in exchange for very high pre-
cision and effective bug-finding capability.

7 Related Work

We have introduced much related work in § 1 and § 3,
respectively. Next, we summarize the previous work.

Locking study. Much work focuses on investigating
lock APIs. In particular, the past work [46] has stud-
ied Android-specific misuses of the wake lock. In con-
trast, we investigate and detect the bugs and vulnerabili-
ties resulting from the misuses of general locks in C/C++
programs. LOCKDOC [48] infers the locking rules for
the data structures in the Linux kernel. In addition,
much work focuses on the performance of locking algo-
rithms [17, 35, 36] and synchronization inferences [42].

Static analysis. LOCKPICK can detect diverse lock mis-
uses and be used as a supplement to existing data race
detectors [33, 34, 44, 74, 75], which generally focus on
thread-shared memory accesses. In § 2, we have revealed
how lock misuses can result in security issues and trig-
ger concurrency errors. Our approaches have a flavor of
some past work [7,12,32], in the sense of identifying re-
dundant thread interleavings. In contrast, our idea of re-
ducing concurrency reasoning for lock misuse detection
is to capture typestate violations as hints. Some work
on detecting improper error handling [28, 94], cross-
checking inconsistent bugs [45,50,54,87,105], and trac-
ing source-sink bugs [21, 80–82] can uncover limited
lock misuses (e.g., missing lock releases). Compara-
tively, LOCKPICK is dedicated and effective in path-
sensitively detecting lock misuses, taking thread inter-
actions into account.

Dynamic analysis. Dynamic tools like VALGRIND [89]
and THREADSANITIZER [79] can instrument lock APIs
and monitor the runtime program behaviors to detect
lock misuses [9, 29, 70, 78, 79, 89, 91]. Notably, dynamic
and static approaches have been separate realms for bug
finding, having different merits. For thoroughly detect-
ing lock misuses with higher code coverage, we believe
that a static bug detector is superior since there is no need
to provide specific inputs and configurations. As demon-
strated, LOCKPICK has found many long-latent errors in
popular large-scale software (e.g., MariaDB, OpenSSL,
PJSIP), which were missed by users, regression testing,
and other testing techniques.

8 Conclusion and Future Work

We have presented LOCKPICK, a practical static anal-
ysis framework for detecting lock misuses. The eval-
uation demonstrates that LOCKPICK is precise and ef-
ficient compared to the state-of-the-art tools. More-
over, LOCKPICK is quite promising, having uncovered
203 previously-unknown confirmed lock misuse errors
on dozens of popular and well-checked open-source soft-
ware with 16 assigned CVE IDs.

As stated in § 2, LOCKPICK cannot (in fact, is not
designed to) detect lock misuses that are (i) induced
by incorrect interactions between locks and other primi-
tives (e.g., events and sockets) and (ii) caused by some
ad-hoc system rules (which require user-supplied or
learned specifications [42]). In the future, we will in-
vestigate these directions to enhance LOCKPICK.

Acknowledgments

We appreciate the anonymous reviewers for their insight-
ful comments. We are also grateful to the software
maintainers for their prompt feedback on the bug re-
ports. This work was partially funded by PRP/004/21FX,
ITS/440/18FP grants, and the donations from Microsoft
and Huawei. Peisen Yao is the corresponding author.

References
[1] AMANN, S., NGUYEN, H. A., NADI, S., NGUYEN, T. N.,

AND MEZINI, M. A systematic evaluation of static api-misuse
detectors. IEEE Trans. Software Eng. 45, 12 (2019), 1170–1188.

[2] AVOTS, D., DALTON, M., LIVSHITS, V. B., AND LAM, M. S.
Improving software security with a C pointer analysis. In
27th International Conference on Software Engineering (ICSE
2005), 15-21 May 2005, St. Louis, Missouri, USA, G. Roman,
W. G. Griswold, and B. Nuseibeh, Eds.

[3] BABIC, D., AND HU, A. J. Calysto: scalable and precise ex-
tended static checking. In 30th International Conference on
Software Engineering (ICSE 2008), Leipzig, Germany, May 10-
18, 2008 (2008), W. Schäfer, M. B. Dwyer, and V. Gruhn, Eds.

[4] BAI, J., LAWALL, J., CHEN, Q., AND HU, S. Effec-
tive static analysis of concurrency use-after-free bugs in linux
device drivers. In 2019 USENIX Annual Technical Confer-
ence, USENIX ATC 2019, Renton, WA, USA, July 10-12, 2019,
D. Malkhi and D. Tsafrir, Eds.

[5] BLACKSHEAR, S., GOROGIANNIS, N., O’HEARN, P. W.,
AND SERGEY, I. Racerd: compositional static race detection.
Proc. ACM Program. Lang. 2, OOPSLA.

[6] BROTHERSTON, J., BRUNET, P., GOROGIANNIS, N., AND
KANOVICH, M. A compositional deadlock detector for android
java. In Proceedings of ASE-36 (2021), ACM.

[7] CAI, Y., YAO, P., AND ZHANG, C. Canary: practical static de-
tection of inter-thread value-flow bugs. In PLDI ’21: 42nd ACM
SIGPLAN International Conference on Programming Language
Design and Implementation, Virtual Event, Canada, June 20-25,
2021, S. N. Freund and E. Yahav, Eds.

[8] CAI, Y., YE, C., SHI, Q., AND ZHANG, C. Peahen: fast and
precise static deadlock detection via context reduction. In Pro-
ceedings of the 30th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software En-
gineering, ESEC/FSE 2022, Singapore, Singapore, November
14-18, 2022 (2022), A. Roychoudhury, C. Cadar, and M. Kim,
Eds., ACM, pp. 784–796.

[9] CHEN, H., GUO, S., XUE, Y., SUI, Y., ZHANG, C., LI,
Y., WANG, H., AND LIU, Y. MUZZ: thread-aware grey-box
fuzzing for effective bug hunting in multithreaded programs. In
29th USENIX Security Symposium, USENIX Security 2020, Au-
gust 12-14, 2020, S. Capkun and F. Roesner, Eds.

[10] CHUGH, R., VOUNG, J. W., JHALA, R., AND LERNER, S.
Dataflow analysis for concurrent programs using datarace de-
tection. In Proceedings of the 29th ACM SIGPLAN Conference
on Programming Language Design and Implementation (New
York, NY, USA, 2008), PLDI ’08, Association for Computing
Machinery, p. 316–326.

[11] CLANG STATIC ANALYZER. https://clang-analyzer.

llvm.org/.

[12] CLARKE, E. M., GRUMBERG, O., MINEA, M., AND PELED,
D. A. State space reduction using partial order techniques. Int.
J. Softw. Tools Technol. Transf. 2, 3 (1999), 279–287.

[13] CVE. CVE Benchmarks for Studying Lock Misuses. https:

//docs.google.com/spreadsheets/d/1R8cNSb8i_

YkOAaysUrBhfTX_xN92437eNzDCxFPu8t4/edit#gid=0.

[14] DAS, M., LERNER, S., AND SEIGLE, M. ESP: path-sensitive
program verification in polynomial time. In Proceedings of the
2002 ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), Berlin, Germany, June 17-
19, 2002, J. Knoop and L. J. Hendren, Eds.

[15] DELINE, R., AND FÄHNDRICH, M. Typestates for objects.
In ECOOP 2004 - Object-Oriented Programming, 18th Euro-
pean Conference, Oslo, Norway, June 14-18, 2004, Proceed-
ings, M. Odersky, Ed., Lecture Notes in Computer Science.

[16] DI, P., SUI, Y., YE, D., AND XUE, J. Region-based may-
happen-in-parallel analysis for C programs. In 44th Interna-
tional Conference on Parallel Processing, ICPP 2015, Beijing,
China, September 1-4, 2015.

[17] DICE, D., MARATHE, V. J., AND SHAVIT, N. Lock cohorting:
a general technique for designing NUMA locks. In Proceedings
of the 17th ACM SIGPLAN Symposium on Principles and Prac-
tice of Parallel Programming, PPOPP 2012, New Orleans, LA,
USA, February 25-29, 2012, J. Ramanujam and P. Sadayappan,
Eds.

[18] DIRTYCOW. https://dirtycow.ninja/.

https://clang-analyzer.llvm.org/
https://clang-analyzer.llvm.org/
https://docs.google.com/spreadsheets/d/1R8cNSb8i_YkOAaysUrBhfTX_xN92437eNzDCxFPu8t4/edit#gid=0
https://docs.google.com/spreadsheets/d/1R8cNSb8i_YkOAaysUrBhfTX_xN92437eNzDCxFPu8t4/edit#gid=0
https://docs.google.com/spreadsheets/d/1R8cNSb8i_YkOAaysUrBhfTX_xN92437eNzDCxFPu8t4/edit#gid=0
https://dirtycow.ninja/

[19] DOR, N., ADAMS, S., DAS, M., AND YANG, Z. Software
validation via scalable path-sensitive value flow analysis. In
Proceedings of the ACM/SIGSOFT International Symposium
on Software Testing and Analysis, ISSTA 2004, Boston, Mas-
sachusetts, USA, July 11-14, 2004, G. S. Avrunin and G. Rother-
mel, Eds.

[20] ENGLER, D., AND ASHCRAFT, K. Racerx: Effective, static
detection of race conditions and deadlocks. In Proceedings of
the Nineteenth ACM Symposium on Operating Systems Princi-
ples (New York, NY, USA, 2003), SOSP ’03, Association for
Computing Machinery, p. 237–252.

[21] FAN, G., WU, R., SHI, Q., XIAO, X., ZHOU, J., AND ZHANG,
C. Smoke: scalable path-sensitive memory leak detection for
millions of lines of code. In Proceedings of the 41st Interna-
tional Conference on Software Engineering, ICSE 2019, Mon-
treal, QC, Canada, May 25-31, 2019.

[22] FARZAN, A., AND MADHUSUDAN, P. Causal dataflow analysis
for concurrent programs. In Tools and Algorithms for the Con-
struction and Analysis of Systems, 13th International Confer-
ence, TACAS 2007, Held as Part of the Joint European Confer-
ences on Theory and Practice of Software, ETAPS 2007 Braga,
Portugal, March 24 - April 1, 2007, Proceedings, O. Grumberg
and M. Huth, Eds., vol. 4424 of Lecture Notes in Computer Sci-
ence.

[23] FREEBSD BUGZILLA. Bug #261051. https://bugs.

freebsd.org/bugzilla/show_bug.cgi?id=261051.
[24] GIACOBAZZI, R., AND RANZATO, F. Optimal domains for dis-

junctive abstract interpretation. Science of Computer Program-
ming 32, 1-3 (1998), 177–210.

[25] GOODSTEIN, M. L., VLACHOS, E., CHEN, S., GIBBONS,
P. B., KOZUCH, M. A., AND MOWRY, T. C. Butterfly anal-
ysis: adapting dataflow analysis to dynamic parallel monitor-
ing. In Proceedings of the 15th International Conference on
Architectural Support for Programming Languages and Oper-
ating Systems, ASPLOS 2010, Pittsburgh, Pennsylvania, USA,
March 13-17, 2010 (2010), J. C. Hoe and V. S. Adve, Eds.,
ACM, pp. 257–270.

[26] GU, R., JIN, G., SONG, L., ZHU, L., AND LU, S. What change
history tells us about thread synchronization. In Proceedings of
the 2015 10th Joint Meeting on Foundations of Software Engi-
neering (New York, NY, USA, 2015), ESEC/FSE 2015, Associ-
ation for Computing Machinery, p. 426–438.

[27] INFER. https://github.com/facebook/infer.
[28] JANA, S., KANG, Y. J., ROTH, S., AND RAY, B. Automatically

detecting error handling bugs using error specifications. In 25th
USENIX Security Symposium, USENIX Security 16, Austin, TX,
USA, August 10-12, 2016, T. Holz and S. Savage, Eds.

[29] JEONG, D. R., KIM, K., SHIVAKUMAR, B., LEE, B., AND
SHIN, I. Razzer: Finding kernel race bugs through fuzzing. In
2019 IEEE Symposium on Security and Privacy, SP 2019, San
Francisco, CA, USA, May 19-23, 2019.

[30] JIN, G., SONG, L., ZHANG, W., LU, S., AND LIBLIT, B. Au-
tomated atomicity-violation fixing. In Proceedings of the 32nd
ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI 2011, San Jose, CA, USA, June 4-8,
2011, M. W. Hall and D. A. Padua, Eds.

[31] JIN, G., ZHANG, W., AND DENG, D. Automated concurrency-
bug fixing. In 10th USENIX Symposium on Operating Systems
Design and Implementation, OSDI 2012, Hollywood, CA, USA,
October 8-10, 2012, C. Thekkath and A. Vahdat, Eds.

[32] KAHLON, V., GUPTA, A., AND SINHA, N. Symbolic model
checking of concurrent programs using partial orders and on-
the-fly transactions. In Computer Aided Verification, 18th Inter-
national Conference, CAV 2006, Seattle, WA, USA, August 17-
20, 2006, Proceedings, T. Ball and R. B. Jones, Eds., vol. 4144
of Lecture Notes in Computer Science.

[33] KAHLON, V., SINHA, N., KRUUS, E., AND ZHANG, Y. Static
data race detection for concurrent programs with asynchronous
calls. In Proceedings of the 7th joint meeting of the European
Software Engineering Conference and the ACM SIGSOFT Inter-
national Symposium on Foundations of Software Engineering,
2009, Amsterdam, The Netherlands, August 24-28, 2009, H. van
Vliet and V. Issarny, Eds.

[34] KAHLON, V., YANG, Y., SANKARANARAYANAN, S., AND
GUPTA, A. Fast and accurate static data-race detection for con-
current programs. In Computer Aided Verification, 19th Interna-
tional Conference, CAV 2007, Berlin, Germany, July 3-7, 2007,
Proceedings, W. Damm and H. Hermanns, Eds., vol. 4590 of
Lecture Notes in Computer Science.

[35] KASHYAP, S., CALCIU, I., CHENG, X., MIN, C., AND KIM,
T. Scalable and practical locking with shuffling. In Proceedings
of the 27th ACM Symposium on Operating Systems Principles
(New York, NY, USA, 2019), SOSP ’19, Association for Com-
puting Machinery, p. 586–599.

[36] KASHYAP, S., MIN, C., AND KIM, T. Scalable numa-aware
blocking synchronization primitives. In 2017 USENIX Annual
Technical Conference, USENIX ATC 2017, Santa Clara, CA,
USA, July 12-14, 2017, D. D. Silva and B. Ford, Eds.

[37] KELLOGG, M., SHADAB, N., SRIDHARAN, M., AND ERNST,
M. D. Lightweight and modular resource leak verification.
In Proceedings of the 29th ACM Joint Meeting on Euro-
pean Software Engineering Conference and Symposium on the
Foundations of Software Engineering (New York, NY, USA,
2021), ESEC/FSE 2021, Association for Computing Machinery,
p. 181–192.

[38] KROENING, D., POETZL, D., SCHRAMMEL, P., AND
WACHTER, B. Sound static deadlock analysis for c/pthreads. In
Proceedings of the 31st IEEE/ACM International Conference on
Automated Software Engineering (New York, NY, USA, 2016),
ASE 2016, Association for Computing Machinery, p. 379–390.

[39] KUSANO, M., AND WANG, C. Flow-sensitive composition of
thread-modular abstract interpretation. In Proceedings of the
2016 24th ACM SIGSOFT International Symposium on Foun-
dations of Software Engineering (New York, NY, USA, 2016),
FSE 2016, Association for Computing Machinery, pp. 799–809.

[40] L2D2. https://pajda.fit.vutbr.cz/xmarci10/

fbinfer_concurrency.

[41] LEVESON, N. G., AND TURNER, C. S. Investigation of the
therac-25 accidents. Computer 26, 7.

[42] LI, G., CHEN, D., LU, S., MUSUVATHI, M., AND NATH, S.
Sherlock: unsupervised synchronization-operation inference. In
ASPLOS ’21: 26th ACM International Conference on Architec-
tural Support for Programming Languages and Operating Sys-
tems, Virtual Event, USA, April 19-23, 2021, T. Sherwood, E. D.
Berger, and C. Kozyrakis, Eds.

[43] LIU, B., AND HUANG, J. D4: fast concurrency debugging with
parallel differential analysis. In Proceedings of the 39th ACM
SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2018, Philadelphia, PA, USA, June 18-
22, 2018, J. S. Foster and D. Grossman, Eds.

[44] LIU, B., LIU, P., LI, Y., TSAI, C.-C., DA SILVA, D., AND
HUANG, J. When threads meet events: Efficient and pre-
cise static race detection with origins. In Proceedings of the
42nd ACM SIGPLAN International Conference on Program-
ming Language Design and Implementation (New York, NY,
USA, 2021), PLDI 2021, Association for Computing Machin-
ery, p. 725–739.

https://bugs.freebsd.org/bugzilla/show_bug.cgi?id=261051
https://bugs.freebsd.org/bugzilla/show_bug.cgi?id=261051
https://github.com/facebook/infer
https://pajda.fit.vutbr.cz/xmarci10/fbinfer_concurrency
https://pajda.fit.vutbr.cz/xmarci10/fbinfer_concurrency

[45] LIU, D., WU, Q., JI, S., LU, K., LIU, Z., CHEN, J., AND
HE, Q. Detecting missed security operations through differen-
tial checking of object-based similar paths. In CCS ’21: 2021
ACM SIGSAC Conference on Computer and Communications
Security, Virtual Event, Republic of Korea, November 15 - 19,
2021 (2021), Y. Kim, J. Kim, G. Vigna, and E. Shi, Eds., ACM,
pp. 1627–1644.

[46] LIU, Y., XU, C., CHEUNG, S., AND TERRAGNI, V. Under-
standing and detecting wake lock misuses for android appli-
cations. In Proceedings of the 24th ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineering, FSE
2016, Seattle, WA, USA, November 13-18, 2016, T. Zimmer-
mann, J. Cleland-Huang, and Z. Su, Eds.

[47] LIVSHITS, B., SRIDHARAN, M., SMARAGDAKIS, Y.,
LHOTÁK, O., AMARAL, J. N., CHANG, B. E., GUYER, S. Z.,
KHEDKER, U. P., MØLLER, A., AND VARDOULAKIS, D. In
defense of soundiness: a manifesto. Commun. ACM 58, 2
(2015), 44–46.

[48] LOCHMANN, A., SCHIRMEIER, H., BORGHORST, H., AND
SPINCZYK, O. Lockdoc: Trace-based analysis of locking in the
linux kernel. In Proceedings of the Fourteenth EuroSys Confer-
ence 2019, Dresden, Germany, March 25-28, 2019, G. Candea,
R. van Renesse, and C. Fetzer, Eds.

[49] LOCKPICK. Confirmed and fixed bugs. https://whichbug.

github.io/.

[50] LU, K., PAKKI, A., AND WU, Q. Detecting missing-check
bugs via semantic- and context-aware criticalness and con-
straints inferences. In 28th USENIX Security Symposium,
USENIX Security 2019, Santa Clara, CA, USA, August 14-16,
2019 (2019), N. Heninger and P. Traynor, Eds., USENIX Asso-
ciation, pp. 1769–1786.

[51] LU, S., PARK, S., SEO, E., AND ZHOU, Y. Learning from
mistakes: a comprehensive study on real world concurrency bug
characteristics. In Proceedings of the 13th International Confer-
ence on Architectural Support for Programming Languages and
Operating Systems, ASPLOS 2008, Seattle, WA, USA, March 1-
5, 2008, S. J. Eggers and J. R. Larus, Eds.

[52] MACHIRY, A., SPENSKY, C., CORINA, J., STEPHENS, N.,
KRUEGEL, C., AND VIGNA, G. DR. CHECKER: A soundy
analysis for linux kernel drivers. In 26th USENIX Security Sym-
posium, USENIX Security 2017, Vancouver, BC, Canada, Au-
gust 16-18, 2017, E. Kirda and T. Ristenpart, Eds.

[53] MARIADB. https://github.com/MariaDB/server/

pull/1948.

[54] MIN, C., KASHYAP, S., LEE, B., SONG, C., AND KIM, T.
Cross-checking semantic correctness: the case of finding file
system bugs. In Proceedings of the 25th Symposium on Op-
erating Systems Principles, SOSP 2015, Monterey, CA, USA,
October 4-7, 2015, E. L. Miller and S. Hand, Eds.

[55] MITRE-CVE. CVE-2004-2650. https://nvd.nist.gov/

vuln/detail/CVE-2004-2650.

[56] MITRE-CVE. CVE-2013-4553. https://nvd.nist.gov/

vuln/detail/CVE-2013-4553.

[57] MITRE-CVE. CVE-2014-1453. https://nvd.nist.gov/

vuln/detail/CVE-2014-1453.

[58] MITRE-CVE. CVE-2014-8131. https://nvd.nist.gov/

vuln/detail/CVE-2014-8131.

[59] MITRE-CVE. CVE-2014-9748. https://nvd.nist.gov/

vuln/detail/CVE-2014-9748.

[60] MITRE-CVE. CVE-2015-8767. https://nvd.nist.gov/

vuln/detail/CVE-2015-8767.
[61] MITRE-CVE. CVE-2017-6353. https://nvd.nist.gov/

vuln/detail/CVE-2017-6353.

[62] MITRE-CVE. CVE-2018-14660. https://nvd.nist.gov/
vuln/detail/CVE-2018-14660.

[63] MITRE-CVE. CVE-2019-14034. https://nvd.nist.gov/
vuln/detail/CVE-2019-14034.

[64] MITRE-CVE. CVE-2019-14763. https://nvd.nist.gov/
vuln/detail/CVE-2019-14763.

[65] MITRE-CVE. CVE-2020-10573. https://nvd.nist.gov/
vuln/detail/CVE-2020-10573.

[66] MITRE-CVE. CVE-2020-12658. https://nvd.nist.gov/
vuln/detail/CVE-2020-12658.

[67] MITRE-CVE. CVE-2020-25604. https://nvd.nist.gov/
vuln/detail/CVE-2020-25604.

[68] MITRE-CVE. CVE-2021-41141. https://nvd.nist.gov/
vuln/detail/CVE-2021-41141.

[69] MITRE-CVE. CVE-2021-41213. https://nvd.nist.gov/
vuln/detail/CVE-2021-41213.

[70] MUKHERJEE, S., DELIGIANNIS, P., BISWAS, A., AND LAL,
A. Learning-based controlled concurrency testing. Proc. ACM
Program. Lang. 4, OOPSLA (2020), 230:1–230:31.

[71] NAIK, M., PARK, C., SEN, K., AND GAY, D. Effective static
deadlock detection. In 31st International Conference on Soft-
ware Engineering, ICSE 2009, May 16-24, 2009, Vancouver,
Canada, Proceedings.

[72] ORACLE. Oracle programming style. https:

//docs.oracle.com/cd/E18752_01/html/816-5137/

guide-35930.html.

[73] PJSIP. Issue #2845. https://github.com/pjsip/

pjproject/issues/2845.

[74] PRATIKAKIS, P., FOSTER, J. S., AND HICKS, M. LOCK-
SMITH: practical static race detection for C. ACM Trans. Pro-
gram. Lang. Syst. 33, 1.

[75] PRATIKAKIS, P., FOSTER, J. S., AND HICKS, M. W. LOCK-
SMITH: context-sensitive correlation analysis for race detec-
tion. In Proceedings of the ACM SIGPLAN 2006 Conference on
Programming Language Design and Implementation, Ottawa,
Ontario, Canada, June 11-14, 2006, M. I. Schwartzbach and
T. Ball, Eds.

[76] REPS, T., HORWITZ, S., AND SAGIV, M. Precise interproce-
dural dataflow analysis via graph reachability. In Proceedings of
the 22nd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (New York, NY, USA, 1995), POPL
’95, Association for Computing Machinery, p. 49–61.

[77] SANKARANARAYANAN, S., IVANČIĆ, F., SHLYAKHTER, I.,
AND GUPTA, A. Static analysis in disjunctive numerical do-
mains. In International Static Analysis Symposium (2006),
Springer, pp. 3–17.

[78] SEN, K. Race directed random testing of concurrent programs.
In Proceedings of the ACM SIGPLAN 2008 Conference on Pro-
gramming Language Design and Implementation, Tucson, AZ,
USA, June 7-13, 2008, R. Gupta and S. P. Amarasinghe, Eds.

[79] SEREBRYANY, K., AND ISKHODZHANOV, T. Threadsanitizer:
Data race detection in practice. In Proceedings of the Workshop
on Binary Instrumentation and Applications (New York, NY,
USA, 2009), WBIA ’09, Association for Computing Machinery,
p. 62–71.

[80] SHI, Q., WU, R., FAN, G., AND ZHANG, C. Conquering the
extensional scalability problem for value-flow analysis frame-
works. In ICSE ’20: 42nd International Conference on Soft-
ware Engineering, Seoul, South Korea, 27 June - 19 July, 2020
(2020), G. Rothermel and D. Bae, Eds., ACM, pp. 812–823.

https://whichbug.github.io/
https://whichbug.github.io/
https://github.com/MariaDB/server/pull/1948
https://github.com/MariaDB/server/pull/1948
https://nvd.nist.gov/vuln/detail/CVE-2004-2650
https://nvd.nist.gov/vuln/detail/CVE-2004-2650
https://nvd.nist.gov/vuln/detail/CVE-2013-4553
https://nvd.nist.gov/vuln/detail/CVE-2013-4553
https://nvd.nist.gov/vuln/detail/CVE-2014-1453
https://nvd.nist.gov/vuln/detail/CVE-2014-1453
https://nvd.nist.gov/vuln/detail/CVE-2014-8131
https://nvd.nist.gov/vuln/detail/CVE-2014-8131
https://nvd.nist.gov/vuln/detail/CVE-2014-9748
https://nvd.nist.gov/vuln/detail/CVE-2014-9748
https://nvd.nist.gov/vuln/detail/CVE-2015-8767
https://nvd.nist.gov/vuln/detail/CVE-2015-8767
https://nvd.nist.gov/vuln/detail/CVE-2017-6353
https://nvd.nist.gov/vuln/detail/CVE-2017-6353
https://nvd.nist.gov/vuln/detail/CVE-2018-14660
https://nvd.nist.gov/vuln/detail/CVE-2018-14660
https://nvd.nist.gov/vuln/detail/CVE-2019-14034
https://nvd.nist.gov/vuln/detail/CVE-2019-14034
https://nvd.nist.gov/vuln/detail/CVE-2019-14763
https://nvd.nist.gov/vuln/detail/CVE-2019-14763
https://nvd.nist.gov/vuln/detail/CVE-2020-10573
https://nvd.nist.gov/vuln/detail/CVE-2020-10573
https://nvd.nist.gov/vuln/detail/CVE-2020-12658
https://nvd.nist.gov/vuln/detail/CVE-2020-12658
https://nvd.nist.gov/vuln/detail/CVE-2020-25604
https://nvd.nist.gov/vuln/detail/CVE-2020-25604
https://nvd.nist.gov/vuln/detail/CVE-2021-41141
https://nvd.nist.gov/vuln/detail/CVE-2021-41141
https://nvd.nist.gov/vuln/detail/CVE-2021-41213
https://nvd.nist.gov/vuln/detail/CVE-2021-41213
https://docs.oracle.com/cd/E18752_01/html/816-5137/guide-35930.html
https://docs.oracle.com/cd/E18752_01/html/816-5137/guide-35930.html
https://docs.oracle.com/cd/E18752_01/html/816-5137/guide-35930.html
https://github.com/pjsip/pjproject/issues/2845
https://github.com/pjsip/pjproject/issues/2845

[81] SHI, Q., XIAO, X., WU, R., ZHOU, J., FAN, G., AND ZHANG,
C. Pinpoint: fast and precise sparse value flow analysis for mil-
lion lines of code. In Proceedings of the 39th ACM SIGPLAN
Conference on Programming Language Design and Implemen-
tation, PLDI 2018, Philadelphia, PA, USA, June 18-22, 2018,
J. S. Foster and D. Grossman, Eds.

[82] SHI, Q., YAO, P., WU, R., AND ZHANG, C. Path-sensitive
sparse analysis without path conditions. In PLDI ’21: 42nd
ACM SIGPLAN International Conference on Programming
Language Design and Implementation, Virtual Event, Canada,
June 20-25, 2021 (2021), S. N. Freund and E. Yahav, Eds.,
ACM, pp. 930–943.

[83] SINHA, N., AND WANG, C. Staged concurrent program
analysis. In Proceedings of the 18th ACM SIGSOFT Inter-
national Symposium on Foundations of Software Engineering,
2010, Santa Fe, NM, USA, November 7-11, 2010, G. Roman
and A. van der Hoek, Eds.

[84] SUI, Y., DI, P., AND XUE, J. Sparse flow-sensitive pointer
analysis for multithreaded programs. In Proceedings of the
2016 International Symposium on Code Generation and Op-
timization, CGO 2016, Barcelona, Spain, March 12-18, 2016,
B. Franke, Y. Wu, and F. Rastello, Eds.

[85] SUI, Y., YE, D., AND XUE, J. Static memory leak detec-
tion using full-sparse value-flow analysis. In Proceedings of the
2012 International Symposium on Software Testing and Analy-
sis (New York, NY, USA, 2012), ISSTA 2012, Association for
Computing Machinery, p. 254–264.

[86] SVF. https://github.com/SVF-tools/SVF.

[87] TAN, X., ZHANG, Y., YANG, X., LU, K., AND YANG, M. De-
tecting kernel refcount bugs with two-dimensional consistency
checking. In 30th USENIX Security Symposium, USENIX Secu-
rity 2021, August 11-13, 2021 (2021), M. Bailey and R. Green-
stadt, Eds., USENIX Association, pp. 2471–2488.

[88] TORLAK, E., AND CHANDRA, S. Effective interprocedural re-
source leak detection. In Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering - Volume 1
(New York, NY, USA, 2010), ICSE ’10, Association for Com-
puting Machinery, p. 535–544.

[89] VALGRIND. https://pmem.io/valgrind/generated/

index.html.

[90] VOUNG, J. W., JHALA, R., AND LERNER, S. RELAY: static
race detection on millions of lines of code. In Proceedings of the
6th joint meeting of the European Software Engineering Con-
ference and the ACM SIGSOFT International Symposium on
Foundations of Software Engineering, 2007, Dubrovnik, Croa-
tia, September 3-7, 2007, I. Crnkovic and A. Bertolino, Eds.

[91] WEN, C., HE, M., WU, B., XU, Z., AND QIN, S. Con-
trolled concurrency testing via periodical scheduling. In 44th
IEEE/ACM 44th International Conference on Software Engi-
neering, ICSE 2022, Pittsburgh, PA, USA, May 25-27, 2022
(2022), ACM, pp. 474–486.

[92] WIKI. The 2003 northeast blackout. https://en.

wikipedia.org/wiki/Northeast_blackout_of_2003.

[93] WILLIAMS, A. L., THIES, W., AND ERNST, M. D. Static
deadlock detection for java libraries. In ECOOP 2005 - Object-
Oriented Programming, 19th European Conference, Glasgow,
UK, July 25-29, 2005, Proceedings, A. P. Black, Ed., vol. 3586
of Lecture Notes in Computer Science.

[94] WU, Q., PAKKI, A., EMAMDOOST, N., MCCAMANT, S., AND
LU, K. Understanding and detecting disordered error handling
with precise function pairing. In 30th USENIX Security Sym-
posium, USENIX Security 2021, August 11-13, 2021, M. Bailey
and R. Greenstadt, Eds.

[95] XIE, Y., AND AIKEN, A. Context- and path-sensitive memory
leak detection. In Proceedings of the 10th European Software
Engineering Conference held jointly with 13th ACM SIGSOFT
International Symposium on Foundations of Software Engineer-
ing, 2005, Lisbon, Portugal, September 5-9, 2005, M. Wer-
melinger and H. C. Gall, Eds.

[96] XIE, Y., AND AIKEN, A. Scalable error detection using boolean
satisfiability. In Proceedings of the 32nd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages,
POPL 2005, Long Beach, California, USA, January 12-14,
2005, J. Palsberg and M. Abadi, Eds.

[97] XU, M., KASHYAP, S., ZHAO, H., AND KIM, T. Krace: Data
race fuzzing for kernel file systems. In 2020 IEEE Symposium
on Security and Privacy, SP 2020, San Francisco, CA, USA,
May 18-21, 2020.

[98] XU, M., QIAN, C., LU, K., BACKES, M., AND KIM, T. Pre-
cise and scalable detection of double-fetch bugs in OS kernels.
In 2018 IEEE Symposium on Security and Privacy, SP 2018,
Proceedings, 21-23 May 2018, San Francisco, California, USA.

[99] YAN, H., SUI, Y., CHEN, S., AND XUE, J. Spatio-temporal
context reduction: a pointer-analysis-based static approach for
detecting use-after-free vulnerabilities. In Proceedings of the
40th International Conference on Software Engineering, ICSE
2018, Gothenburg, Sweden, May 27 - June 03, 2018, M. Chau-
dron, I. Crnkovic, M. Chechik, and M. Harman, Eds.

[100] YANG, J., CUI, A., STOLFO, S. J., AND SETHUMADHAVAN,
S. Concurrency attacks. In 4th USENIX Workshop on Hot Top-
ics in Parallelism, HotPar’12, Berkeley, CA, USA, June 7-8,
2012 (2012), H. Boehm and L. Ceze, Eds., USENIX Associ-
ation.

[101] Z3. https://github.com/Z3Prover/z3.

[102] ZHAN, S., AND HUANG, J. ECHO: instantaneous in situ race
detection in the IDE. In Proceedings of the 24th ACM SIG-
SOFT International Symposium on Foundations of Software En-
gineering, FSE 2016, Seattle, WA, USA, November 13-18, 2016,
T. Zimmermann, J. Cleland-Huang, and Z. Su, Eds.

[103] ZHAO, S., GU, R., QIU, H., LI, T. O., WANG, Y., CUI, H.,
AND YANG, J. OWL: understanding and detecting concurrency
attacks. In 48th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks, DSN 2018, Luxembourg
City, Luxembourg, June 25-28, 2018.

[104] ZHOU, J., SILVESTRO, S., LIU, H., CAI, Y., AND LIU, T.
UNDEAD: detecting and preventing deadlocks in production
software. In Proceedings of the 32nd IEEE/ACM International
Conference on Automated Software Engineering, ASE 2017, Ur-
bana, IL, USA, October 30 - November 03, 2017, G. Rosu, M. D.
Penta, and T. N. Nguyen, Eds.

[105] ZHOU, Q., WU, Q., LIU, D., JI, S., AND LU, K. Non-
distinguishable inconsistencies as a deterministic oracle for de-
tecting security bugs. In Proceedings of the 2022 ACM SIGSAC
Conference on Computer and Communications Security, CCS
2022, Los Angeles, CA, USA, November 7-11, 2022 (2022),
H. Yin, A. Stavrou, C. Cremers, and E. Shi, Eds., ACM,
pp. 3253–3267.

https://github.com/SVF-tools/SVF
https://pmem.io/valgrind/generated/index.html
https://pmem.io/valgrind/generated/index.html
https://en.wikipedia.org/wiki/Northeast_blackout_of_2003
https://en.wikipedia.org/wiki/Northeast_blackout_of_2003
https://github.com/Z3Prover/z3

	Introduction
	A Characteristic Study
	Background
	A Taxonomy of Lock Misuses
	Security Impacts of Lock Misuses

	Lockpick in a Nutshell
	Lock Misuses Formulation
	Goals and Challenges
	Our Lockpick Approach

	Algorithm Design
	Preliminaries
	Typestates Analysis for Locks
	Demand-Driven MHP Analysis
	Lock Misuse Bug Detection
	Detecting Lock Misuses within a Thread
	Detecting Lock Misuses between Threads

	Implementation
	Evaluation
	Effectiveness on Bug Hunting
	Comparison with Previous Tools
	Ablation Study

	Related Work
	Conclusion and Future Work

