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This work presents a fast and precise value-flow analysis framework called Anchor for the programs using
containers. We introduce the notion of anchored containers and propose the memory orientation analysis
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1 INTRODUCTION

A container, e.g., list, set, or map, is an abstract data type that supports manipulating a collection
of objects by its interfaces. General-purpose programming languages provide many implemen-
tations, such as the C++ STL containers [1], the Java Collections Framework (JCF) [2], and the
specific classes in the Java EE framework (Java EE) [3]. Their pervasive usages require a static an-
alyzer to reason how an object flows into and out of containers for various tasks, such as program
understanding [4–6], bug detection [7–11], and debugging [12, 13].

Goal and Challenge. Our goal is to establish a fast and precise reasoning of container memory
layouts for value-flow analysis. Unfortunately, the problem is always one of the “Achilles’ heels”
of static analysis [14]. Note that a container modification changes both which objects are stored,
i.e., the ownership, and which indexes are associated with the objects, i.e., the index-value corre-
lation. The precise reasoning of containers requires the strong updates upon container memory
layouts, involving the program facts in multiple domains. First, we require a precise pointer anal-
ysis [15–17] to identify the manipulated objects, including both the containers and the elements.
Second, applying strong updates to a listlike container relies on numeric analyses [18–20] to de-
termine the relational positions of the manipulations. Third, the indexes of maplike containers are
general comparable objects, and its strong updates often depend on complex relational properties
of strings [21–24] and user-defined data structures [25, 26]. More importantly, the prerequisites
are closely intertwined, demanding a solution to address them simultaneously. The overall quality
of the results would collapse if any one of these analyses became imprecise.

Existing Effort. Reasoning container memory layouts is theoretically an undecidable prob-
lem [27]. Existing approaches mainly adopt two different strategies to achieve the over-
approximation. One line of the techniques smashes a container and only reasons about the own-
ership without analyzing the indexes [28–32]. Although the analyses scale to large programs, the
spurious value flows plague the analysis results such that 75.2% of the client analysis are false pos-
itives [33]. The other line of the techniques encodes the program values by logical formulae and
applies strong updates by enforcing the container axioms [34, 35]. Despite the high precision, the
exhaustive symbolic reasoning introduces a significant number of case analyses, causing the dis-
junctive explosion problem [36] and degrading the scalability significantly. For example, Compass
only scales to 128 KLoC even when the solving procedure is optimized [35, 37].

Insight. Although analyzing generic containers is pie in the sky, there exists a particular class
of containers, of which the memory layouts can be precisely tracked by deterministic indexes. As
shown in Figure 1, for example, the modifications of the container objects always occur at the
end or use constant keys, which can be discovered by tracking all possible modifications upon
container objects. The stored objects can be identified by the deterministic indexes, which enables
strong updates upon container memory layouts. Specifically, we formulate the idiom by the notion
of anchored containers. A container is an anchored container at a program location if all the pre-
ceding modifications have deterministic indexes. Anchored containers widely exist in real-world
programs, e.g., 75.6% Java EE containers in the top 10 cases searched on GitHub conform to the pro-
gramming idiom.1 They establish the “anchors” for memory objects, which can be used to identify
precise value flows through containers.

Solution. We introduce the memory orientation analysis to identify anchored containers and
compute their precise index-value correlations, which further support a fast and precise value-flow
analysis. Specifically, we establish a combined abstract domain embodied with path constraints to

1The empirical data are listed online: https://containeranalyzer.github.io/empirical.pdf.
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Fig. 1. Examples of a programming idiom in Hibernate-ORM, NetBeans, Struts, and IoTDB.

Fig. 2. A motivating program.2

track multi-domain properties precisely, such as points-to facts and deterministic indexes. At a
high level, our approach works in two stages as follows:

• The memory orientation analysis identifies anchored containers and applies the strong up-
dates to their memory layouts. A non-anchored container is smashed without analyzing its
index-value correlation. Based on container memory layouts, the memory orientation analy-
sis enables the construction of a precise value-flow graph. For example, the container objects
o1 and o3 in Figure 2 are anchored containers. It index-value correlation implies that p is null
and r is not null at line 21, and the analysis constructs the precise value-flow graph with the
solid edges in Figure 3.
• We conduct a demand-driven reachability analysis to solve an instance of the value-flow

problem. It collects the value-flow facts of interest when traversing the value-flow graph. The
constraints are collected and solved to determine the reachability if necessary. For example,
the null pointer exception (NPE) detector traverses the value-flow graph in Figure 3 from
null values to dereferenced pointers, and reports an NPE with no false positive.

Note that it is non-trivial to identify and apply strong updates to anchored containers in the
first stage, involving the accumulative effects of the modifications along control flow paths. For
example, the container objecto2 are modified at lines 6, 8, and 9, and the last two modifications have
non-deterministic indexes, so o2 is not an anchored container after line 8. Particularly, we establish
a subdomain to maintain the accumulative effects of modifications upon each container object,
which explicitly indicates whether it is an anchored container. When transforming each subdomain
simultaneously, we instantiate a semantic reduction operator [38] to track the interleaving among
multiple subdomains and apply strong updates to anchored containers.

2The program is simplified from Hibernate-ORM, IoTDB, and Struts.
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Fig. 3. The value-flow graph3 of Figure 2. A node represents a value at a program location, and an edge

from a@�1 to b@�2 indicates that the value a flows to the value b between the program locations �1 and

�2. The nodes hs_arд1, ids_arд1, and hs_arд2 represent the auxiliary parameters [39–41], which indicate the

elements accessed at lines 17, 18, and 19, respectively.

Highlight. The memory orientation analysis benefits value-flow analysis with three character-
istics as follows:

• The memory orientation analysis applies strong updates to anchored containers in the com-
bined domain rather than enforcing container axioms by logics exhaustively, making the
analysis more precise than [29, 32] and less vulnerable to disjunctive explosion [36].
• Although the memory orientation analysis only computes the precise index-value correla-

tions of anchored containers, it amplifies the precision benefit and obtains the more precise
ownership information of other containers, no matter whether they are anchored containers
or not.
• The memory orientation analysis divorces analyzing container semantics from value-flow

analysis and delays reasoning about the feasibility of value-flow paths until client analyses,
effectively alleviating the burden of constraint solving.

We implement and evaluate Anchor by choosing thin slicing [4] and value-flow bug detec-
tion [42] as the clients. It is shown that Anchor enables a satisfactory improvement in thin
slicing, reporting 17.1% fewer statements than the smashing-based slicer for the real-world pro-
grams. Moreover, it discovers all the taint flows through containers in the OWASP benchmark
projects [43] with no false positive, and detects 20 NPEs in the real-world projects with 9.1% (2/22)
as its false-positive ratio. In contrast, the smashing-based detector reports 31.0% spurious taint
flows and 66.7% false positives of NPEs, respectively. Remarkably, Anchor features graceful scal-
ability and finishes analyzing the program with 5.12 MLoC in 5 hours. Upon the submission, there
had been 12 true positives of NPEs confirmed by the developers [44]. We also prove the soundness
of Anchor theoretically. Anchor has been integrated into the static analysis platform Pinpoint
in the Ant Group, an international FinTech company with over 1 billion global users. In summary,
we make the following main contributions:

• We introduce the notion of anchored containers and establish a combined abstract domain to
identify them automatically.
• We propose the memory orientation analysis to apply strong updates to anchored containers,

which promotes further value-flow analysis.
• We implement and evaluate Anchor by thin slicing and value-flow bug detection, showing

its high precision and linear scalability in real-world scenarios.

3For simplicity, we omit the constraint ϕ in Figure 3 if ϕ = T .
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• Anchor has been deployed in Ant Group, reporting hundreds of bugs in the CI process. We
have published the list of the bugs detected by Anchor online [44], along with the detailed
empirical data of anchored containers.

The rest of the article is organized as follows. Section 2 shows the motivating example and the
outline of our approach. Section 3 presents the preliminary background, and Section 4 formulates
the problem we focus on. Section 5 defines the abstract memory, and Section 6 presents the details
of the memory orientation analysis. Section 7 discusses the demand-driven reachability analysis
and presents two typical clients of value-flow analysis, including thin slicing and value-flow bug
detection. Sections 8 and 9 demonstrate the details of the implementation and the evaluation, re-
spectively, followed by the discussion of several lines of related studies in Section 10. Section 11
provides the conclusion of the work.

2 OVERVIEW

The section presents the container categorization, illustrates a motivating example, and finally
outlines our overall idea.

2.1 Category of Containers

We adopt the classification in Reference [35] and categorize the containers into two types, namely
position-dependent containers and value-dependent containers. In a position-dependent container,
e.g., ArrayList and Stack in JCF, each element has a position, representing the location where it is
stored. A value-dependent container, e.g., the HashMap in JCF and HttpSession in Java EE, stores
its elements based on their values. Particularly, the Set is also a value-dependent container. Gener-
ally, a container is manipulated by an interface call at an index. An index is a non-negative integer
in a position-dependent container, which denotes the position where the interface manipulates the
container, or a key in a value-dependent container, which is a comparable object, such as a string
and other user-defined types.

2.2 Motivating Example

This section presents a motivating example program and discusses the limitations of existing ef-
forts. Finally, we demonstrate our aim at the end of the section.

Program Description. Figure 2 shows a container-manipulating program, which contains two
functions, i.e., foo and bar. Specifically, there are three container objects allocated in the function
foo, namely the HttpSession object o1, the HashMap object o2, and the Stack object o3. After in-
serting several elements into the container objects, the function foo invokes the function bar and
passes o1 and o3 as the actual parameters. In the function bar, three elements are retrieved from the
two container objects, and finally dereferenced at line 21. To simplify the example, we introduce
a boolean variable c as the branch conditions, where c does not always evaluate to true or false.

Following existing efforts on value-flow analysis [41, 45], we leverage the value-flow graph

(VFG) to demonstrate how each value propagates in the program, which is shown in Figure 3.
Particularly, an edge (v1@�i , v2@�j ) labeled a constraint ϕ in the VFG indicates that the value
can flow between v1 at �i and v2 at �j when ϕ holds, where �i and �j denote the positions in the
control flow graph. Based on the VFG, we can further perform a variety of value-flow clients. In
the NPE detection, a feasible path from null value to a dereferenced pointer indicates a possible
NPE in the program. For example, the feasible path from null@�5 to p@�21 indicates that the
dereference of p causes an NPE at line 21. Unfortunately, it is non-trivial to establish the VFG for
a container-manipulating program, as it is required to analyze container memory layouts, which
involves multiple sophisticated analyses, such as points-to analysis, numeric analysis, and so on.
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Fig. 4. Schematic overview of our approach.

Limitations of Existing Work. Existing static approaches mainly analyze container memory
layouts in two ways, which are not precise or scalable enough for real-world programs. One line
of the recent efforts smashes each container into a set of objects and does not reason the indexes
[28–32]. Although they often obtain gentle scalability, spurious value flows can plague the re-
sults of the clients. For example, a smashing-based analysis can introduce five dash edges in the
VFG shown in Figure 3, which indicate the spurious value flows. Specifically, the dash edge from
null@�5 to i@�7 shows the spurious fact that i can be null after line 7, as the smashing-based
analysis does not analyze the index-value correlation of o1. Similarly, it discovers that q@�21 and
r@�21 can be null and finally yields two false positives.

The other line leverages symbolic analysis to compute the program values by logical formulae
and applies strong updates to memory layouts by enforcing container axioms [34, 35]. Container
memory layouts, including index-value correlations, are abstracted by logical formulae explicitly
and exhaustively, and case analysis makes the number of the disjunctions exponentially large. For
instance, s in Figure 2 does not have a deterministic value, which introduces two disjunctions for
o2 after line 8, corresponding to the cases that s is equal or not equal to “id ,” respectively. Thus, the
analyses have to handle the verbose constraints, preventing its scalability significantly.

Our Aim. In this work, we aim to establish fast and precise reasoning of container memory
layouts for value-flow analysis. More specifically, we expect the analysis to obtain precise value
flows through containers so that it could remove more spurious value flows than smashing-based
approaches. Besides, the analysis is required to exhibit high efficiency and gentle scalability when
analyzing large-scaled container-manipulating programs. It would have a great impact on many
static clients, including thin slicing and value-flow bug detection, and thus, promote the under-
standing and improve the reliability of container-manipulating programs in the real world.

2.3 Our Approach

Our work balances the tension between precision and scalability by utilizing a programming idiom.
In many cases, the modifications of a position-dependent container occur at its beginning or end,
while the keys of a value-dependent container are constant. Given a container memory layout,
the modified layout is unique if the index of the modification is deterministic. Moreover, if all the
modifications upon a container have deterministic indexes before the program location �, then
its memory layout can be precisely determined at � by tracking the modifications before � along
control flow paths. We define the class of containers as anchored containers, which enable strong
updates and further promote a precise value-flow analysis.

Utilizing anchored containers as our sweet spot, we propose the memory orientation analysis

to analyze container memory layouts precisely. Figure 4 shows the schematic overview of our
approach. In the high level, our approach consists of two phases, namely the memory orientation
analysis and the demand-driven reachability analysis. In the first phase, the memory orientation
analysis tracks multi-domain properties simultaneously, such as points-to facts and deterministic
indexes, which support identifying anchored containers for strong updates. Based on container
memory layouts, it constructs a precise value-flow graph, e.g., constructing the graph with the solid
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edges in Figure 3 for the program in Figure 2. In the second phase, we conduct a demand-driven
reachability analysis by the graph traversal to solve an instance of the value-flow problem. Note
that we do not invoke SMT solvers in the memory orientation analysis but store the constraints
compactly in the graph, which are only collected and checked on demand in the traversal to avoid
unnecessary overhead.

Benefit. The memory orientation analysis unleashes the strength of anchored containers with
twofold benefits:

• Precise memory layouts of anchored containers support discovering more precise value
flows and promotes a chain of further analyses in the clients. For example, the anchored
container o1 in Figure 2 finally enables the analysis to avoid the false positives in the NPE
detection.
• The precision benefit can be further amplified, which promotes the reasoning the memory

layouts of other containers. For example, the non-anchored container o2 exclude the null

value defined at line 5, as the anchored container o1 makes the null not reach i at line 7.

The motivating example illustrates the workflow of Anchor. From the example, we find it is
crucial but non-trivial to identify and utilize anchored containers. In Section 4, we formulate our
problem and formally define anchored containers, following the outline of other sections.

3 PRELIMINARIES

The section presents several preliminary concepts, including program syntax, concrete memory,
concrete semantics, and value-flow graph.

3.1 Program Syntax

We borrow the language syntax in Reference [35] and formalize our analysis with a simple Java-like
language in Figure 5. A program is in the static single assignment form [46]. Statements include
allocation statements, assignments, container interface calls, sequencing, branches, function calls,
container traversals, and return statements. Particularly, the right-hand side of an assignment can
be a variable or a literal.

We analyze two types of containers, namely position-dependent containers and value-
dependent containers. Container interface calls have three cases, namely inserting, accessing, and
removing elements. Each container interface can manipulate a container at a specific index. Partic-
ularly, we add an artificial index τe to represent the end of a position-dependent container so that
the language supports adding an element at the end more flexibly. Besides, a loop can traverse a con-
tainer, and all the elements are accessed once exactly. We assume that a loop in the program is mem-
oryless [47], i.e., the order of the iterations does not affect the semantics of the loop. The language
also supports the nesting of containers, because v in the insertion can point to another container.

Remark. Our work mainly focuses on the semantic analysis of container manipulations. We do
not discuss how to handle the fields of memory objects, although we achieve the field sensitivity
based on existing techniques [41, 48]. The language syntax in Figure 5 also omits several program
constructs, such as reflective method calls, which are not the major concerns of our work. With the
benefit of the formulation of the above syntax, our analysis can ensure the soundness in analyzing
all the program constructs shown in Figure 5, which is proven in Section 6.7.2.

3.2 Concrete Memory and Concrete Semantics

Given a program P , a program location � is the position in the control flow graph. We regard
program memory as a collection of values ν ∈ V bound with addresses α ∈ D ⊆ V and indexes

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 3, Article 66. Pub. date: April 2023.
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Fig. 5. The syntax of the language.

δ ∈ Δ ⊆ V . Specifically, a memory location is denoted by a pair (α ,δ ) ∈ D ×Δ. An index δ can be
an address or a literal in the program. We introduce two sets Dp and Dv to denote the set of the
addresses where the position-dependent and value-dependent containers are stored, respectively.

Definition 3.1 (Concrete Memory State). A concrete memory state M at the program location �
is (E,L), where

• The environment E is a function mapping a program variable u ∈ X to a value ν ∈ V ,
indicating the value of the variable. Particularly, E (u) is the address where the object pointed
by u is stored if E (u) ∈ D.
• The layout L maps a memory location (α ,δ ) ∈ D × Δ to the pair of an index and a value

(δ ,ν ) ∈ Δ×V . Particularly,⊥ ∈ V is introduced to show that there does not exist any value
stored at the index.

Based on this concrete memory, we can define the operational semantics of container interfaces
straightforwardly, which is similar to the definitions in Reference [35]. To simplify the notation,
we introduce the mapping sec (L) to get the value stored at a specific index in a container, i.e.,
L(α ,δ ) = (δ , sec (L) (α ,δ )). Figure 6 shows the definitions of concrete semantics.

• The rules Ins and Rem define the concrete operational semantics of the insertion and re-
moval, respectively. Due to the difference between position and value-dependent containers,
the two rules conduct the case analysis when modifying the layout in the concrete memory.
• For the access interface call, the rule Acc obtains the value ν ′ stored at the index E (u) and

enforce the E ′(v ) equal to the value ν ′.
• A loop traversing a container takes each index-value pair in the container to execute the

statement S in each iteration. Particularly, the helper rule Proc is defined inductively to
exercise the traversal.

Example 3.2. In Figure 2, the interface setAttribute adds two key-value pairs in the container
object pointed by hs at lines 4 and 5. After line 5, we have

E (hs ) = α , L(α , “id”) = (“id”, “a”), L(α , “aдe”) = (“aдe”,null ).

3.3 Value-flow Graph

A value q flows to p if q is assigned to p directly (via an assignment, such as p = q) or indirectly
(via container interface calls, such as c .insert(0,p);q = c .access(0)). We can construct a graph
to abstract how the value reaches a program location from another by an edge labeled with a
constraint. Formally, we define the value-flow graph as follows.

Definition 3.3 (Value-flow Graph). A Value-flow Graph (VFG) is a directed graph G = (N ,E,Θ),
where N , E, and Θ are defined as follows:
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Fig. 6. Concrete semantics of container-manipulating programs.

• N is a set of nodes, each of which is denoted by v@�, indicating v is defined or used at a
program location �.
• E ⊆ V × V is a set of edges. (v1@�1,v2@�2) ∈ E means that the value v1@�1 flows to
v2@�2.
• Θ maps each edge to a constraint ϕ, meaning that the value-flow relation holds only when
ϕ is satisfied.

Example 3.4. In Figure 2, we can find that “a” is associated with the index “id” before line 7, so
we add the edge from “a”@�4 to i@�7 to the VFG in Figure 3, indicating the value flow induced by
container interface calls at lines 4 and 7.

Following the previous studies [41, 42, 49], we formulate value-flow analysis as a reachability
problem over a VFG. We can track the value-flow facts for various clients, such as thin slicing [4],
value-flow bug detection [42], and so on. For example, we collect all feasible paths from null to the
dereferenced values in the NPE detection.

4 CONTAINER-AWARE VALUE-FLOW PROBLEM

To obtain precise value-flow paths, we need to identify the indirect flows induced by container
interface calls. Concretely, we need to determine the objects accessed by each access interface call,
and the reachability relation should perceive the induced value flows. We call this container-aware

value-flow problem, which is a fundamental concern in static analysis. Any specific instance of
value-flow analysis has to resolve the problem when analyzing programs using containers.

Based on the semantics of container interface calls, container memory layouts, i.e., the owner-
ship and index-value correlations, determine the value flow through containers. First, an object is
never accessed if it is not stored in the container. Second, an object can be accessed by the access
interface call at the index δ if associated with δ . Now we formalize the two properties and provide
the formal definition of the container memory layout.
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Definition 4.1 (Container Memory Layout). Assume that a container object o is stored at the
address α ∈ D in the concrete memory M = (E,L). The memory layout of the container object o
consists of the following two properties:

• Ownership: It indicates whether there exists δ ∈ Δ for a value ν such that L(α , δ ) = (δ , ν ).
For a value-dependent container object o, it also indicates whether there exists ν ′ ∈ V for a
value ν such that L(α , ν ) = (ν , ν ′).
• Index-value correlation: For any pair of an index and a value (δ , ν ), the index-value correla-

tions indicates whether ν is paired with δ at the address α , i.e., L(α , δ ) = (δ , ν ).

It is necessary to analyze container memory layouts precisely and efficiently to support analyz-
ing real-world programs using containers. However, precise reasoning of container memory lay-
outs, as other non-trivial semantic properties, is an undecidable problem for general programs [27].
Fortunately, as explained in Section 2.3, there is a typical class of container objects of which mod-
ifications occur at deterministic indexes. Their memory layouts are deterministic after the modifi-
cations, which enables precise reasoning without case analysis. Formally, we define the notion of
anchored container as follows.

Definition 4.2 (Anchored Container). A container objecto is an anchored container at the program
location � if an arbitrary modification interface call st before � has the constant indexδ . Particularly,
τe is a constant index.

Intuitively, we can identify anchored containers and analyze their memory layouts precisely.
Meanwhile, the precision enhancement introduced by anchored containers also benefits analyzing
memory layouts of other containers, even if the containers are not anchored containers.

Example 4.3. In Figure 2, setAttribute modifies o1 upon constant keys at lines 4 and 5, so o1 is an
anchored container after line 5. Therefore, i must be equal to “a” at line 7. Meanwhile, o2 is not an
anchored container, as s is not constant at lines 8 and 9. It is worth noting that we still obtain more
precise ownership of o2 that the null at line 5 is excluded, showing that the precision enhancement
can even propagate to non-anchored containers.

Roadmap. To solve the container-aware value-flow problem, we propose the memory orienta-
tion analysis, which is our main technical contribution, to identify and apply strong updates to
anchored containers. The combined effects of container semantics are analyzed without sophis-
ticated reasoning of indexes and finally encoded in the VFG. However, as explained in Section 1,
it is non-trivial to enable the identification, involving analyzing the facts in multiple domains si-
multaneously. Specifically, we present a novel memory abstraction to maintain the multi-domain
program facts (Section 5), based on which the memory orientation analysis reasons container se-
mantics by applying abstract transformers (Sections 6.1–6.5) and constructs a precise VFG (Sec-
tion 6.6). For a specific client, we conduct a demand-driven reachability analysis by traversing the
VFG (Section 7), which benefits from the precise enhancement provided by the memory orientation
analysis.

5 ABSTRACT MEMORY

The section presents the abstract memory used in this work (Sections 5.1–5.3) and highlights the
technical challenges of memory orientation analysis that rests on the abstraction (Section 5.4).

5.1 Abstract Memory State

We abstract the memory based on allocation sites [50] and form a finite set of abstract objects
O := Op ∪ Ov ∪ Os , where Op , Ov , and Os are the sets of position-dependent container objects,
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value-dependent container objects, and non-container-typed objects, respectively. Besides, we
construct a finite set of literals Oc ⊆ Os , where τ̂e ∈ Oc represents the end position of a
position-dependent container. X is a set of program variables, and Φ is a set of path constraints.
Formally, we define abstract memory state as follows.

Definition 5.1 (Abstract Memory State). An abstract memory state M at the program location �
is a 4-tuple (E, L,C,U). Here, E, L,C, and U are defined as follows:

• Abstract environment E maps a program variablev to a set of abstract memory object (o) and
constraint (ϕ) pairs, indicating v points to o when ϕ holds.
• Abstract layout L := (B,R) contains two subdomains:

– B := Op ∪ Ov → B abstracts the ownership of each container object, where
B := P (O × Φ) × P (O × Φ).

Basically, we set the first entry of B(op ) to {(o,T ) | o ∈ O} for op ∈ Op , indicating
that we only concern the stored objects without considering their positions in a position-
dependent containers.

– R := Op ∪ Ov → Rp ∪ Rv abstracts the index-value correlations of the container objects,
where

Rp := P (∪N
k=0O

k × Φ), Rv := P (Oc × O × Φ),
where N is the number of insertions upon position-dependent containers, bounding the
sizes of the container objects.

• Constant domain C is a function of program variables. C(v ) ∈ Oc when v must point to a
literal, and C(v ) = ⊥ when v is not initialized. Otherwise, C(v ) = �.
• Uniqueness domain U maps o ∈ Op ∪ Ov to 1 if o is always modified upon deterministic

indexes. Otherwise, U(o) = 0.

Essentially, an abstract environment E over-approximates the points-to facts, i.e., v may point
to a memory object o in a concrete execution if ϕ is satisfied, where (o,ϕ) ∈ E(v ). Similarly, the
ownership and the index-value correlation of each container are over-approximated by the sepa-
rate subdomains of L. Meanwhile, a constant domain C under-approximates whether a variable
points to a literal. Last, U stores the accumulative effects of the modifications upon each container
object, and thus, serves as the criteria of identifying anchored containers.

Definition 5.2 (Criteria of Anchored Container). An abstract container object o is an anchored
container at the program location � if U(o) = 1 where M = (E, L,C,U) is the abstract memory
at �.

Example 5.3. Consider o1 ∈ Ov pointed by hs in Figure 2. ind1 and ind2 are the indexes of the
insertions at lines 4 and 5, respectively. Obviously, we have C(ind1) = “id” and C(ind2) = “aдe .”
Therefore, o1 is always modified upon deterministic indexes after line 5. Concretely, we have

B(o1) = ({(“id”,T ), (“aдe”,T )}, {(“a”,T ), (null ,T )})

R(o1) = {((“id”, “a”),T ), ((“aдe”,null ),T )}, U(o1) = 1.

Particularly, U(o1) = 1 indicates that o1 is an anchored container after line 5.

5.2 Join Operator and Partial Order

Given the definitions of O, Φ, and M, we introduce the join operator and the partial order of the
combined domain.
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Definition 5.4 (Join Operator of M). 	M is the join operator of M, i.e., M = M1 	M M2, where
M1 = (E1, L1,C1,U1) and M2 = (E2, L2,C2,U2). M = (E, L,C,U) is defined as follows:

E(v ) := E1 (v ) 	E E2 (v )

B(o) := B1 (o) 	B B2 (o) R(o) := R1 (o) 	R R2 (o)

C(v ) := C1 (v ) 	C C2 (v ) U(o) := U1 (o) 	U U2 (o).

Particularly, we define 	E,	C, and 	U as follows:

E1 (v ) 	E E2 (v ) := {(o, ϕ1 ∨ ϕ2) | (o,ϕ1) ∈ E1 (v ), (o,ϕ2) ∈ E2 (v )}

B1 (o) 	B B2 (o) :=
{
((ok ,ϕ

1
k ∨ ϕ

2
k ), (ov ,ϕ

1
v ∨ ϕ2

v )) | ((ok ,ϕ
i
k ), (ov ,ϕ

i
v )) ∈ Bi (o), i ∈ {1, 2}

}

R1 (o) 	R R2 (o) :=
{
(t , ϕ1 ∨ ϕ2) | (t ,ϕ1) ∈ R1 (o), (t ,ϕ2) ∈ R2 (o), t ∈ ∪N

k=0O
k
}

∪ {(t , ϕ1 ∨ ϕ2) | (t ,ϕ1) ∈ R1 (o), (t ,ϕ2) ∈ R2 (o), t ∈ Oc × O}

C1 (v ) 	C C2 (v ) := ite(C1 (v ) = C2 (v ),C1 (v ),�), U1 (o) 	U U2 (o) := ite(U1 (o) = U2 (o),U1 (o), 0).

Specifically, ite is the shorthand of if-then-else expression. For clarity, we assume that (o, F ) ∈ E(v ),
if there, does not exist ϕ such that (o,ϕ) ∈ E(v ). For other subdomains, we also use the similar
assumptions to make the definitions compact.

Definition 5.5 (Partial Order of M). M1 �M M2 if and only if there exists M
′ such that M1	M M

′ =
M2. �M also naturally exports the definitions of �E, �L, �C, and �U.

Intuitively, a join operator is a set union with a disjunction of path constraints. The complexity
of a join operator of each subdomain is O ( |D1 | + |D2 |), because we can maintain D1 and D2 by
sorted lists, and a join operator takes linear time. Further, we naturally extend the join operators
	R and 	E to the batch join operators 	̃R and 	̃E to join multiple elements, which are applied in
the rules in Sections 6.3 and 6.5.

5.3 Layout Operator for Strong Update

According to the definition of L, its second subdomain R abstracts the index-value correlations
of container objects, i.e., how objects are associated with the indexes. To support strong updates,
we define the layout operators to describe the semantics of inserting, accessing, and removing the
objects, which are applied to update the abstract memory in Section 6.

Definition 5.6 (Layout Operator). Given ol ∈ Op , om ∈ Ov , oi ,ok ∈ Oc , and ov ∈ O, a layout
operator has one of the following forms:

• μ (R,ol ,oi ,ov ) and μ (R,om ,ok ,ov ) insert an single object and a pair of objects to ol and om

at a deterministic position oi and key ok , respectively, producing the new container memory
layouts after the insertions.
• π (R,ol ,oi ) and π (R,om ,ok ) collect the object at a deterministic position oi and key ok , re-

spectively, returning a set of abstract objects paired with constraints, which indicate accessed
elements and conditions.
• ω (R,ol ,oi ) andω (R,om ,ok ) remove the single object and the pair of objects at a deterministic

position oi and key ok from ol and om , respectively, producing the new container memory
layouts after the removals.
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Any operation on an anchored container is essentially a layout operator, which is a function
returning a new state in the subdomain R, corresponding to the index-value correlations after the
operation. Due to the finite size of Oc , the complexity of a layout operator is bounded by |R(o) | · |Oc |.
Although |R(o) | depends on the numbers of the insertions and removals in different branches, com-
puting layout operators is still more light-weighted than solving complex constraints qualifying
positions and keys with a sheer number of disjunctions.

Example 5.7. In Figure 2, we have R(o1) = ∅ before line 4. The insertion at line 4 induces
μ (R,o1, “id”, “a”), which updates R(o1) to {((“id”, “a”),T )}.

5.4 Summary

According to the abstract states, we can determine the indirect value flows induced by the container
interface calls. Specifically, the points-to facts in the abstract environment E provide sufficient
information of adding value-flow edges in the value-flow graph, based on which the client of
value-flow analysis can be performed.

Example 5.8. Before line 7 in the program shown in Figure 2, we have

R(o1) = {((“id”, “a”),T ), ((“aдe”,null ),T )}.

After line 7, we can obtain E(i ) = {(“a”,T )}. Finally, we add an edge from “a”@�4 to i@�7 to the
VFG in Figure 3.

Technical Challenges. Based on the abstract memory, we have to compute the abstract state
for each program location. Specifically, we should resolve the following issues:

• We should identify the manipulated memory objects precisely for container interface calls,
posing the challenge in updating points-to facts in E.
• A container object may be modified and accessed at dozens of locations in the program and

form different memory layouts, making it challenging to maintain L precisely and efficiently.
• The facts in the subdomains have sophisticated interactions, which requires a non-trivial

semantic reduction operator [38]. For example, the update of L should be aware of U to
determine whether strong updates should be applied.

6 MEMORY ORIENTATION ANALYSIS

The section presents the memory orientation analysis that addresses the technical challenges dis-
cussed in Section 5.4. We first present the abstract transformers of operations not related to con-
tainers and show how to maintain precise points-to facts (Section 6.1). We then define the partial
abstract transformers of container interface calls (Section 6.2), and propose a semantic reduction
operator, i.e., witness operator, to obtain a more precise abstract state by applying strong updates
to anchored containers (Section 6.3). Based on the partial abstract transformers and witness oper-
ators, we depcit the abstract semantics of a container interface call (Section 6.4). We also define
the abstract semantics of container traversals briefly (Section 6.5). Finally, we illustrate how the
memory orientation analysis integrates the reasoning of container semantics into the VFG con-
struction (Section 6.6). The benefits of the memory orientation analysis are further summarized
along with the formulation and the proof of the soundness (Section 6.7).

In what follows, we describe the abstract transformers as deductive rules of the form:

E, L,C,U � st : E
′, L′,C′,U′,

where (E, L,C,U) and (E′, L′,C′,U′) are the abstract memory states before and after the statement
st , respectively.
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Fig. 7. Abstract transformer of allocation and assignment.

Fig. 8. Abstract transformer of sequencing and branch.

6.1 Abstract Semantics of Non-Container Operation

Non-container operations include allocation statements, assignments, sequencing, and branches.
We define their abstract transformers as follows.

Allocation Statement and Assignment. Figure 7 presents the abstract transformers for allo-
cation statements and assignments. The rules are straightforward. For instance, when a memory
object is allocated, we create an abstract object o ∈ O. To maintain the points-to relation between
v and o, we apply the strong update to the abstract environment E by setting E(v ) to {(o,T )}, in-
dicating v must point to o after the statement. Meanwhile, v cannot be a variable pointing to a
literal. Thus C(v ) is set to �.

The assignmentv = u applies the strong update to the points-to set ofv by setting E(v ) to E(u),
and the abstract values of v and u in the constant domain are merged. Similarly, we define the
abstract transformer for a literal assignment.

Sequencing and Branch. In Figure 8, the rule T-Sequencing defines the abstract transformer of
a sequence of statements, which is the composition of the abstract transformer of each statement.
Similarly, the rule T-Branch defines the abstract transformer of a branch statement. It first conjoins
the branch conditions ϕ and ¬ϕ with every constraint in the abstract states respectively and then
transforms the abstract states along two branches. Finally, it joins the abstract states at the end
of two branches and obtains the abstract state after the branch statement. Particularly, we use the
notation M ∧ ϕ as a shorthand of conjoining ϕ with the constraints in M.

6.2 Partial Abstract Transformer of Container Interface Call

We proceed to depict the abstract semantics for container interface calls. The overall idea is to
locate the abstract container objects manipulated by the interface call based on the points-to facts
in E and then recompute L. Because we cannot determine whether the manipulated container
object is an anchored container or not from U before the statement, we postpone the strong updates
on the memory layouts of anchored containers by an additional operator (Section 6.3), and define
a partial abstract transformer first without analyzing index-value correlations of the manipulated
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Fig. 9. Partial abstract transformers of container interface call.

containers. For clarity, we first define the unary operator �R to construct the upper bound of the
abstract layout of a container object.

Definition 6.1 (Upper-Bound Operator). Given o ∈ Op ∪ Ov and R, we define the upper-bound
operator �R:

�R (R,o) :=
{(
t ,
∨

(t ′,ϕ )∈R(o) ϕ
)
| t ∈ T

}
,

where T := ∪N
k=0O

k when o ∈ Op and T := Oc × O when o ∈ Ov . Note that �R (R,o) is the
conceptual upper bound of the abstract layout of o. We use this notation for defining the rules
while do not compute it explicitly.

We describe the partial abstract transformers of container interface calls in the following deduc-
tive form:

E, L,C,U �t st : E
′, L′,C′,U′.

Figure 9 presents the partial abstract transformers for container interface calls. First, the rule
T-Ins defines the partial abstract transformer of an insertion. For each abstract objects pointed by
c , u, and v , it transforms the abstract memory state in three steps.

• For an abstract container object oc pointed by c , the rule updates its abstract value in B by
inserting ou and ov with the constraint ϕc ∧ ϕu .
• To update R, T-Ins simply sets the abstract value of oc to its conceptual upper bound to obtain

a sound approximation by the upper-bound operator in Definition 6.1.
• The abstract value of oc in the uniqueness domain is also updated and set to 0 if the abstract

value of ou in the constant domain is not literal. Otherwise, it is preserved and equal to the
original abstract value.

Similarly, we define the rule T-Rem for a removal. The difference is that T-Rem does not change
B with the assumption that no element is removed to guarantee the soundness.

Last, T-Acc defines the partial abstract transformer of an access interface call. C(v ) is set to be�,
asv is not assigned by a literal. Meanwhile, T-Acc iterates each abstract container object oc pointed
by c and the abstract objects oe in its value set, and oe is exactly the accessed object. Finally, T-Acc

applies the strong update to E(v ) by enforcing v point to oe under ϕc ∧ ϕe , where ϕc and ϕe are
the paired constraints of oc and oe , respectively.
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Fig. 10. Witness operator of container interface call.

Example 6.2. Before line 5 in Figure 2, we have U(o1) = 1, R(o1) = {((“id”, “a”),T )}, B(o1) =
({(“id”,T )}, {(“a”,T )}), and C(ind2) = “aдe” ∈ Oc , where ind2 is the insertion index, so we have
U
′(o1) = 1 after line 5. Applying T-Ins, we have

B
′(o1) = ({(“id”,T ), (“aдe”,T )}, {(“a”,T ), (null ,T )})

R
′(o1) = �R (R,o1) = {(t ,T ) | t ∈ Oc × O}.

As defined in the rule T-Ins, the values of the manipulated container object in B are merged
by 	B. According to Definition 5.4, the disjunctions in constraints enable the strong update on B.
However, while the rules support precise reasoning about B, we cannot obtain how objects are
stored in each container, because C and U are opaque to R.

6.3 Witness Operator

To utilize anchored containers and obtain more precise memory layouts, we instantiate the witness
operators [51] for semantic reduction [38]. Based on Definition 5.2 in Section 5.4, U

′ determines
all the anchored containers at the statement st . Therefore, the key idea underlying the witness
operators is to sharpen R as long as we find that an abstract container object is anchored (according
to the subdomain U). Specifically, the witness operator takes as input the abstract memory states
M := (E, L,C,U) before the statement and M

′ := (E′, L′,C′,U′) after applying the partial abstract
transformer and finally returns a smaller abstract memory state M

′′ := (E′′, L′′,C′′,U′′) compared
with M

′. We describe the witness operator as deductive rules of the following form:

(E, L,C,U), (E′, L′,C′,U′) �w st : (E′′, L′′,C′′,U′′).

Figure 10 presents the witness operators for container interface calls. With the facts in C and
U, it is possible to transform R to smaller states than R

′ in an insertion and removal and obtain a
smaller state E

′′ than E
′ in an access interface call.

• For an insertion, the rule W-Ins first examines whether u points to a literal and the abstract
container object oc pointed by c is deterministic. If oc is an anchored container, then the
layout operator μ updates its memory layout maintained by R. Because the number of the
abstract memory objects pointed byv can be larger than 1, all the updated abstract layouts R

of oc are joined by 	̃R. Similarly, the rule W-Rem applies the strong update to R and removes
the stored objects from the memory layout of an anchored container by ω.
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• The rules of the witness operators for access interface calls are straightforward. If u points
to a literal and c points to an anchored container, then W-Acc utilizes the layout operator π
to collect the memory objects oe paired with the index ou in R and then applies the strong
update to E(v ) by enforcing v point to oe .

Example 6.3. After applying the rule T-Ins for the insertion at line 5 in Figure 2, we have U
′(o1) =

1, indicating that o1 is an anchored container. Thus, we have

R
′′(o1) = 	̃R{(t ,ϕ ∧T ) | (t ,ϕ) ∈ μ (R,o1, “aдe”,null )} = {((“id”, “a”),T ), ((“aдe”,null ),T )}.

Generally, a semantic reduction operator in the combined domain can be expensive, as it requires
pairwise or cliquewise operators [38, 52]. We notice that join operators are applied multiple times
in the rule W-Ins, iterating thek-tuples or pairs of abstract objects in μ (R,oc ,ou ,ov ) and computing
the constraint of each k-tuple or pair. A naive design has quadratic time complexity in the total
number of k-tuples or pairs. We optimize witness operators by maintaining a hash value for each
k-tuple and pair so that the join operator can be applied in linear time complexity. Specifically, if
(t1,ϕ1) and (t2,ϕ2) satisfy the condition that t1 and t2 have the same hash value, then we are aware
that t1 and t2 are equal and then create the disjunction ϕ1 ∨ ϕ2 paired with t1 (i.e., t2).

6.4 Abstract Semantics of Container Interface Call

For each container interface call, we can easily compute its abstract semantics by applying witness
operators after the partial abstract transformers. Specifically, we have the abstract transformer
M � st : M

′ for a container interface call st if and only if M �t st : M0 and M,M0 �w st : M
′.

In contrast to the partial abstract transformers in Figure 9, the witness operators demand the
post-states of the subdomains after applying the partial abstract transformers, such as U

′, to iden-
tify anchored containers for strong updates. However, the partial abstract transformers in Figure 9
induces the transition of each subdomain independently, permitting the parallel updates of the
subdomains. We separate the witness operators from the partial abstract transformers to achieve
better efficiency in the transition.

It is worth noting that witness operators only affect the abstract memory states when the con-
tainer interface calls manipulate an anchored container at a deterministic index. For example, we
can safely skip other computations of witness operators if u does not point to a literal. Although
we compose witness operators with partial abstract transformers eagerly, we can end unnecessary
witness operators by scheduling the computations of the premises of the rules in Figure 10.

With the benefit of witness operators, we can obtain more precise container memory layouts by
achieving the semantic reduction. We state the correctness of the witness operators in Figure 10
as the following theorem.

Theorem 6.1. Given a container interface call st and an abstract memory state M before st , we

have

M �t st : M
′ ∧ M,M′ �w st : M

′′ ⇒ M
′′ �M M

′.

Proof. We sketch the proof for the case in which st is an insertion. Without the loss of gen-
erality, we only prove the correctness of W-Ins for position-dependent containers. For value-
dependent containers, the proofs can be provided in almost the same way. Also, we can construct
the similar proofs for the other two kinds of container interface calls.

According to the definitions of W-Ins in Figure 10, we only need to prove that L
′′ �L L

′. Based
on the definition of W-Ins, we have L

′′ = (B′,R′′). Therefore, we only have to prove that for an
arbitrary op ∈ Op and ((o1

1, . . . ,o
k
1 ),ϕ1) ∈ R

′′(op ), there exists ((o1
2, . . . ,o

k
2 ),ϕ2) ∈ R

′(op ) such that
oi

1 = oi
2 (1 ≤ i ≤ k ) and ϕ1 implies ϕ2. Based on the definition of T-Ins and W-Ins, R

′′ and R
′ only
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Fig. 11. Abstract transformer of container traversal.

differ at oc pointed by c , where E(c ) = {(oc ,ϕc )}. We have

A(ov ,ϕv ) = 	̃R{(t ,ϕ ∧ ϕv ) | (t ,ϕ) ∈ μ (R,oc ,ou ,ov )}
R
′′ = R

′[oc → 	̃R{A(ov ,ϕv ) | (ov ,ϕv ) ∈ E(v )}].
Consider an arbitrary ((o1,o2, . . . ,om ),ϕ ′′) ∈ R

′′(oc ), we can derive the following fact from the
definition of μ:

∃((o1,o2, . . . ,ooi−1,ooi+1, . . . ,om ),ϕ) ∈ R(oc ), ϕ ∧ ϕv = ϕ ′′.

Based on the definition of �R, we have R
′(oc ) = �R (R,oc ) = {(t , ∨(t ′,ϕ )∈R(oc ) ϕ) | t ∈ ∪N

k=0O
k }.

Let t = (o1,o2, . . . ,om ), and ϕ ′ =
∨

(t ′,ϕ )∈R(oc ) ϕ. We have ϕ implies ϕ ′ according to the property
of the logical disjunction. Meanwhile, we have ϕ ′′ implies ϕ based on ϕ ∧ ϕv = ϕ ′′, so we get
ϕ ′′ implies ϕ ′. Thus, we have proved that for each ((o1,o2, . . . ,om ),ϕ ′′) ∈ R

′′(oc ), there exist
((o1,o2, . . . ,om ),ϕ ′) ∈ R

′(oc ) such that ϕ ′′ implies ϕ ′. �

Remark. The precision enhancement provided by witness operators also propagates to non-
anchored containers because of the interactions among the subdomains E, B, and R. With the
benefit of precise index-value correlations in R, the witness operators in Figure 10 also generate
more precise points-to facts in E, based on which the transformers in Figure 9 produce more precise
ownership in B for general containers.

Another interesting benefit of witness operators is that the objects with fields can be precisely
analyzed in a field sensitive manner. Essentially, such an object is a particular kind of an anchored
container. The constant indexes of the manipulations are exactly the field names of the object. In
real-world programs, container objects are often used as the fields of a user-defined object. A field-
insensitive analysis can hardly apply strong updates upon container memory layouts, as it does not
identify which container objects are pointed by the field precisely. Therefore, the witness operators
can compute the precise points-to facts for each field, which further enables strong updates for the
container objects pointed by the fields.

6.5 Semantics of Container Traversal

For a traversal, the rules in Figure 11 iterate the loop body to obtain the fixed point. For example,
the rule T-Loop first enumerates the objects stored in a container and enforces u and v point to
these objects. Besides, u and v cannot point to certain literals, so C(u) and C(v ) are set to �. The
rule Fix finally computes the fixed point for the loop body.

To assure the termination, we define and apply the widening operator � [53] if the abstract state
M before an iteration is not equal to the abstract state M1 after the iteration. The path constraint
after widening is set to be true if it is changed in the iteration. The finite sizes of X and O guarantee
that M1 = M must hold after applying the rule Fix finite times, and the rule T-Loop must be
terminating.
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Table 1. Rules of Computing Value-flow Edges

Statement Condition Edge

v = a; ∃oa , (oa ,ϕa ) ∈ E(a) ∧ (oa ,ϕv ) ∈ E(v ) a → v : ϕa ∧ ϕv

v = u; ∃o, (o,ϕv ) ∈ E(v ) ∧ (o,ϕu ) ∈ E(u) u → v : ϕv ∧ ϕu

v = c .access (u) ∃o∃w, (o,ϕv ) ∈ E(v ) ∧ (o,ϕw ) ∈ E(w ) w → v : ϕv ∧ ϕw

6.6 Value-flow Graph Construction

Based on the points-to facts in E, we can identify the accessed container object, add the value-flow
edges labeled with constraints, and, finally, stitch value flows from different functions by function
summaries to construct a global VFG. Compared with previous value-flow analyses [41, 48, 54],
the memory orientation analysis extends the abstract memory model to analyze the semantics of
container interface calls, finally discovering the value flows through containers precisely.

Following the existing approaches [41, 48], the memory orientation analysis computes the ab-
stract memory and constructs the VFG in two phases as follows.

Intraprocedural Analysis. We construct the VFG for a function straightforwardly based on
the rules in Table 1. For an assignment, we check the points-to sets of the variables on the left and
right-hand sides and add the edge if they are not disjoint. For an access interface call, a value-flow
edge is produced between w and v when their points-to sets are not disjoint after the statement.
The guarded constraints of the edges are exactly the conjunctions of the constraints of the points-
to facts in E. Particularly, we do not invoke SMT solvers on the constraints but store them in the
graph as an edge label. To simplify the constraints, we follow the previous work [41] and utilize
lightweight semi-decision procedures to filter out apparent contradictions.

Interprocedural Analysis. In the presence of function calls, we introduce the abstract objects
for the formal parameters at the function entry and the formal return values at the function exit.
Following existing techniques [39–41], we also add auxiliary parameters and return values to sup-
port depicting side effects. Then, we compute the abstract memory in the intraprocedural analysis
and build the function summary according to the abstract memory [35], which are the edges be-
tween the parameters to the returns in the VFG of a single function, abstracting the effect of calling
the function [55]. Finally, we inline the function summary of the callee at each call site located in
the caller function in a bottom-up manner, yielding a global VFG of the whole program.

Example 6.4. For the function bar in Figure 2, the last element of o3 is accessed at line 18, so
we add an auxiliary parameter node ids_arд1 to the VFG in Figure 3. Based on the abstract state
before line 14, we can determine that i@�7 and j@�11 can be the last element, inducing two edges
from i@�7 and j@�11 to ids_arд1, respectively. Similarly, we add the other two auxiliary parameter
nodes, i.e., hs_arд1 and hs_arд2, and connect them with null@�5 and “a”@�4, respectively, to form
the interprocedural value flow.

6.7 Summary

6.7.1 Benefit of the Combined Domain. Our memory orientation rests on the combined domain
to apply strong updates to the memory layouts of anchored containers, allowing a more precise
solution than the one obtained by solving each subdomain separately. Essentially, C supports the
constant propagation [56] and affects the state transition in the uniqueness domain U. Even if
an index is computed at runtime, we can still effectively identify whether it is constant or not.
Furthermore, E and U enable us to introduce the witness operators for semantic reduction [38]
and obtain more precise abstract states.
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Fig. 12. The interactions between the subdomains and the corresponding rules.

Figure 12 shows the interactions between the subdomains, which are indicated by the edges
labeled with the sets of the rules. In total, there are 10 edges in Figure 12 showing 10 ways of
interactions of the subdomains. We discuss two typical interactions as follows.

• The edge from U to R indicates the precision benefit introduced by the rules W-Ins and W-

Rem. They apply the strong updates upon the memory layouts of the anchored containers
and compute their precise index-value correlations in R.
• The edge from E to B indicates that we can obtain more precise ownership even if the con-

tainer is not an anchored container, as the rule T-Ins propagates the precision benefit from
E to B.

Overall, the combined domain and its abstract transformers serve as a critical role in the memory
orientation analysis, eventually promoting the precision of value-flow analysis.

6.7.2 Soundness of the Memory Orientation Analysis. Last, we discuss the soundness of the
memory orientation analysis. An anchored container is essentially a data structure with a set of
fields. According to the partial abstract transformers in Figure 9, the uniqueness domain U in-
dicates whether a container object must be an anchored container or not. This implies that we
perform strong updates conservatively, as we under-approximate the set of anchored containers.
As long as we identify anchored containers, we finally reason their index-value correlations in the
way of existing field-sensitive analyses [30, 57], which ensures the soundness theoretically.

Formally, we state the soundness of abstract semantics by the following theorem.

Theorem 6.2. Given a program P , there exists an abstraction function α such that for any concrete

memory state M and abstract memory state M if α (M ) �M M, then

M � P : M ′ ∧ M � P : M
′ ⇒ α (M ′) �M M

′.

Proof. We sketch the proof of the theorem as follows. The key of the proof is to construct the
abstraction function α . According to Definitions 3.1 and 5.1, we can define the function σ : V → O

as follows to abstract the values in the concrete memory by the abstract objects in the abstract
memory.

• If ν is an address in the concrete memory, then σ maps it to the abstract memory object based
on the allocation-site abstraction, Specifically, σ (ν ) is the abstract memory object allocated
by the statement applying the address ν .
• If ν is a literal, then σ maps ν to the corresponding literal object o ∈ Oc .

Given a concrete memory M at the program location �, we can define (Ê, L̂, Ĉ, Û) := α (M )

by utilizing σ . First, we construct the abstract environment Ê based on E. According to the con-
crete memory M , we can easily computes the path constraint ϕ by creating the conjunction of the
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equality of the variables in the branch conditions before �. Thus, we define Ê as follows for any
ν ∈ V :

Ê(σ (ν )) = {(σ (E (v )),ϕ)}.
Second, we construct the abstract layout L̂ := (B̂, R̂). Here, we consider two cases in which σ (ν )

is a position-dependent and value-dependent abstract container object, respectively.

• σ (ν ) ∈ Op : We can obtain the memory layout of the position-dependent container object
storing at the address ν based on the concrete memory M , i.e., L(ν , i ) = (i,νi ), where 1 ≤
i ≤ k . Therefore, we have

B̂(σ (ν )) = {({(o,T ) | o ∈ O}, {(σ (νi ),ϕ) | 1 ≤ i ≤ k })}

L̂(σ (ν )) = {((σ (ν1), . . . ,σ (νk )), ϕ)}.
• σ (ν ) ∈ Ov : We can obtain the memory layout the value-dependent container object storing

at the address ν based on the concrete memory M , i.e., L(ν ,κi ) = (κi ,νi ), where 1 ≤ i ≤ k .
Similarly, we have

B̂(σ (ν )) = ({(σ (κi ),ϕ) | 1 ≤ i ≤ k }, {(σ (νi ),ϕ) | 1 ≤ i ≤ k })

L̂(σ (ν )) = {((σ (κi ), σ (νi )), ϕ) | 1 ≤ i ≤ k }.

Third, we construct the state in constant domain Ĉ. For any variable v in the program, we
enforce Ĉ(v ) = σ (θ ) if v is always equal to a certain literal θ before �. If v has not been initialized,
then we set Ĉ(v ) to ⊥. Otherwise, we let Ĉ(v ) be �.

Fourth, we can compute Û(σ (ν )) in the similar way of defining Ĉ. Specifically, Û(σ (ν )) = 1 if
the container object storing at the address ν satisfy the condition of an anchored container before
the program location �. Otherwise, we set Û(σ (ν )) to 0.

Therefore, we can obtain the abstraction function α , which maps M to M̂ = (Ê, (B̂, R̂), Ĉ, Û).
Given the concrete semantics in Figure 6, we can examine the relation α (M ′) and M

′ based on
Definitions 9 and 10 straightforwardly. Intuitively, the composition of the partial abstract trans-
formers and the witness operators updates the abstract memory conservatively, preserving the
relation that α (M ′) �M M

′. Meanwhile, the monotonicity of the join operator 	M guarantees the
soundness of analyzing the program in the presence of the branches and loops. Finally, the sound
function summary implies the soundness of analyzing the program with function calls. �

According to the rules of computing value-flow edges in Table 1, we can further obtain the
following corollary based on Theorem 6.2, which states the soundness of the overall value-flow
analysis. We omit the sketch of its proof in the article, as it can be obtained from the soundness of
computing the abstract memory immediately.

Corollary 6.1. Given a program P , if a value u at the program location �1 flows to a value v at

the program location �2 in a concrete execution of P , then there must exist a value-flow edge from

u@�1 to v@�2 in the VFG constructed in the memory orientation analysis.

7 DEMAND-DRIVEN REACHABILITY ANALYSIS

Once we obtain the VFG by the memory orientation analysis in Section 6, we can reduce the
container-aware value-flow problem to a reachability problem [41, 58]. For a specific client, we con-
duct a demand-driven reachability analysis by traversing the graph and collecting the value-flow
facts of interest. The section presents two fundamental clients, namely thin slicing and value-flow
bug detection, to demonstrate that our approach benefits program understanding and improves
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memory safety, respectively. We utilize the motivating example in Figure 2 and its VFG in Figure 3
to illustrate the details of the clients throughout the section.

7.1 Thin Slicing

Program slicing identifies a subset of the program relevant to a program variable and a statement,
called the seed. It has wide applications in program understanding [4–6] and debugging [12, 13].
Different from traditional slicing, the thin slice for a seed includes only the statements that affect
the values of the variable directly, called the producer statements, and exclude the dependencies
of the base pointer and control dependencies [4]. Thus, thin slices are smaller than conventional
slices and support more precise program understanding.

To identify the producer statements, we conduct the reachability analysis by backward travers-
ing the VFG from the seed. As blamed in Reference [4], data structures are a major source of slice
pollution. The precise reasoning of container semantics enables the slicer to obtain more precise
slices for container-manipulating programs.

Example 7.1. Consider the variable q and the statement ids .peek () at line 18 in Figure 2. We can
obtain the set of the slices S as follows by a backward traversal from q@�18:

S = {s1 : “a”@�4 ↪→ i@�7 ↪→ ids_arд1 ↪→ q@�18,

s2 : “b”@�6 ↪→ j@�11 ↪→ ids_arд1 ↪→ q@�18,

s3 : null@�9 ↪→ j@�11 ↪→ ids_arд1 ↪→ q@�18}.

If the analysis does not distinguish the objects in containers, then the thin slice also includes
the insertions at line 5, which is a spurious producer statement. Specifically, we have the set of the
slices S ′:

S ′ = S ∪ {s4 : null@�5 ↪→ i@�7 ↪→ ids_arд1 ↪→ q@�18}.

7.2 Value-flow Bug Detection

Value-flow bugs cover a wide category of program bugs, such as NPE [42], memory leak [59],
and taint vulnerabilities [7, 60]. For example, detecting NPE suffices to perform a forward graph
traversal, checking the reachability of the value-flow path from null to the dereferenced pointer.
Similarly, taint vulnerability detection is essentially the problem of analyzing the reachability from
the sources to the sinks specified in the taint specifications [29].

In the programs using containers, such as Web applications [8, 32], value flows are often propa-
gated through containers, some of which may trigger the bugs. Our approach strengthens the bug
detection for these programs.

Example 7.2. The NPE detector traverses the VFG in Figure 3 from the null values to the derefer-
enced pointers, i.e., p, q, and r at line 21. It discovers that the value flow is reachable from null@�5
to p@�21, forming the path

p1 : null@�5 ↪→ hs_arдs1 ↪→ p@�17 ↪→ p@�21.

Thus, the NPE detector reports the NPE without false positives. However, a container mashing-
based analysis reports two false positives caused by the following spurious value flows even if it
is path-sensitive:

p2 : null@�5 ↪→ hs_arдs2 ↪→ r@�19 ↪→ r@�21

p3 : null@�5 ↪→ i@�7 ↪→ id_arд1 ↪→ q@�18 ↪→ q@�21.
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7.3 Summary

The VFG of a container-manipulating program precisely summarizes how values flow through
containers, enabling the clients to solve the instances of the value-flow problem by a demand-
driven reachability analysis. If necessary, the path constraints are collected on demand and then
solved by an SMT solver. Our approach judiciously delays constructing and reasoning about the
disjunctions until SMT solving in the reachability analysis. The solver only checks the constraints
of certain paths and bypass irrelevant ones, further promoting the scalability of our approach. Also,
the precision often goes arm in arm with scalability in the analysis [61, 62]. The strong updates in
the memory orientation analysis reduce the facts in each subdomain, yielding a more sparse VFG.
Moreover, it can decrease the number of the traversed paths in the reachability analysis, alleviating
the overall overhead.

8 IMPLEMENTATION

We have implemented Anchor based on the static analysis platform Pinpoint [41, 48] in Ant
Group, using Z3 [63] as the SMT solver. Anchor supports a variety of value-flow analyses, such
as the value-flow bug detection and thin slicing. Benefited from the original design of Pinpoint,
Anchor achieves the context-, flow-, field-, and path-sensitivity in the client analysis. Our work
extends the memory model of Pinpoint, enabling the precise reasoning of container memory
layouts. In this section, we mainly present the details on the implementations of the memory
orientation analysis and the reachability analysis.

Memory Orientation Analysis in Anchor. In the memory orientation analysis, Anchor an-
alyzes the collections in JCF, Java legacy collections, and data structures in Java EE, which are
widely utilized in real-world programs [32, 64]. Table 2 shows their names and categories. Specifi-
cally, we provide the container specification in a configuration file to specify the concrete seman-
tics of each container interface, such as inserting at the end of a position-dependent container,
and removing the pair at a specific key in a value-dependent container. In the memory orientation
analysis, Anchor loads the configuration file to identify container interface calls, and updates ab-
stract memory states by applying corresponding partial abstract transformers in Figure 9 and the
witness operators in Figure 10. Particularly, Anchor is only concerned with the memory layouts
of the containers and does not perform the reasoning of other sophisticated properties, such as
the largest key of a TreeMap object and the first-inserted key in a LinkedHashMap object. It is
worth mentioning that several kinds of Java EE containers are essentially a composition of multi-
ple position-dependent containers or value-dependent containers. For example, a JspContext ob-
ject maintains the JspWriter objects sequentially and the attribute objects with the keys. Anchor
analyzes such container objects separately, e.g., it splits a JspContext object into two containers,
regarding it an object with two container-typed fields.

Reachability Analysis in Anchor. In our reachability analysis, we collect and solve the con-
straints on demand in the traversal. Instead of leveraging a full-feature SMT solver, we also imple-
ment several semi-decision procedures as the intra-procedural preprocessing procedures, such as
unit propagation, to determine unsatisfiable or valid constraints in a light-weighted manner [63],
most of which can be achieved in linear time. For general cases, we model the variables in the
program by bit vectors in the constraints, and set the length of a bit vector to the bit width. To
avoid solving the formula in a large size, we adopt an eager strategy to prune the infeasible paths
before they reach the sink nodes. Specifically, we solve the condition of a path at specific program
locations in the traversal even if it has not reached a sink node. If the current path condition has
been unsatisfiable, then we can safely stop the traversal, as it cannot form a feasible path.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 3, Article 66. Pub. date: April 2023.



66:24 C. Wang et al.

Table 2. List of Containers

Framework Name Category Framework Name Category

JCF ArrayList position Legacy Vector position
JCF LinkedList position Legacy Stack position
JCF HashSet value Java EE ServletContext value
JCF TreeSet value Java EE ServletRequest value
JCF LinkedHashSet value Java EE HttpServletRequest value
JCF HashMap value Java EE HttpServletResponse value
JCF TreeMap value Java EE HttpServletRequestWrapper value
JCF LinkedHashMap value Java EE HttpServletResponseWrapper value
Legacy Properties value Java EE HttpSession value
Legacy Dictionary value Java EE JspContext position, value
Legacy Hashtable value Java EE PageContext position, value

9 EVALUATION

To demonstrate the utility, we address the following research questions:

• RQ1: How universe are anchored containers? (Section 9.1)
• RQ2: How efficient is Anchor in constructing the VFG? (Section 9.2)
• RQ3: How effective is Anchor in thin slicing? (Section 9.3)
• RQ4: How precise and scalable is Anchor in detecting value-flow bugs? (Section 9.4)

We conduct four experiments to answer the research question. First, we count anchored contain-
ers to show the universality of the concept. Second, we measure the time and memory overhead
of the VFG construction for real-world programs. Third, we count the producer statements as the
size of a thin slice to measure the precision of thin slicing. Finally, as a case study, we use taint
vulnerabilities and null pointer exception to measure the precision and scalability in detecting
value-flow bugs.

Subjects. We select 18 open-source Java projects on GitHub that are actively maintained and
contain intensive usage of various containers. They cover different sizes (ranging from 19 KLoC to
5.12 MLoC) and diverse application domains (such as RPC frameworks, data management systems,
etc.). Besides, many of these projects, such as MyBatis, HBase, and Hadoop, are the fundamental in-
frastructure of database-backed applications and big data processing systems. They are extensively
and frequently scanned by academic static analyzers [10, 65, 66], and industrial tools, and thus ex-
pected to have every high quality. We also select several open-sourced projects in Ant Group,
including sofa-rpc, atlas, and dubbo, to show our commercial value for the company. Particularly,
we choose the OWASP benchmark projects [43] as the subjects to evaluate taint vulnerability de-
tection, as configuring taint specifications for real-world programs might be subjective.

Environment. We evaluate Anchor on a 64-bit machine with 40 Intel Xeon CPU E5-2698
v4@2.20 GHz and 512 GB of physical memory. Following previous studies [41, 67], we set the time
limit of an SMT call to 10 s. Any analysis is run with a limit of 6 hours and 150 GB of memory.

9.1 Identifying Anchored Containers

To show the prevalence of anchored containers, we count the anchored containers at the exit of
each project by the memory orientation analysis. Specifically, we examine the uniqueness domain
U at the exit and count the number of the container objects o, which is mapped 1 by U. Several
container objects are anchored containers at specific program locations, e.g., the HashMap object
o2 at line 7 in Figure 2. However, we do not consider them in such a fine-grained manner, although
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Table 3. The Number of Anchored Containers and Overhead of Building the VFG

Project Description
Size

(KLoC)
#AC #NAC

VFG-N VFG-O VFG-S
Time
(min)

Mem
(GB)

Time
(min)

Mem
(GB)

Time
(min)

Mem
(GB)

GraphJet Graph processing system 19 35 85 0.1 0.4 0.1 0.4 0.1 0.4
mapper Server application 22 18 77 0.3 0.6 0.4 0.7 0.3 0.6
light-4j Microservice platform 44 48 182 0.3 1.5 0.3 1.6 0.3 1.6
roller Server application 54 87 267 1.2 1.7 1.4 1.9 1.2 1.8
MyBatis ORM framework 61 81 220 1.0 2.8 1.1 3.1 1.1 3.1
sofa-rpc RPC framework 74 72 238 1.3 3.7 1.5 3.9 1.4 3.8
Glowstone Server application 86 125 303 1.4 3.1 1.7 3.4 1.5 3.3
DolphinScheduler Eventing infrastructure 90 132 457 1.3 2.7 1.6 2.9 1.5 2.9
atlas Server application 142 226 551 1.7 4.1 2.1 4.7 2.0 4.6
Struts Web framework 170 197 765 2.9 5.1 3.3 5.6 3.2 5.5
dubbo RPC framework 184 173 736 3.0 5.5 3.5 6.1 3.2 5.9
IoTDB Data management system 236 445 1,498 6.7 10.0 7.2 10.9 6.8 10.2
Spring-Boot Web framework 346 396 1,152 7.1 10.4 7.9 12.1 7.5 11.8
Cassandra Database system 538 534 1,250 11.3 15.3 13.1 18.4 12.5 17.7
Hibernate-ORM ORM framework 787 452 1,288 13.4 20.8 16.6 23.1 14.5 22.3
HBase Data management system 791 677 1,626 14.9 21.6 17.2 24.3 15.8 23.7
Hadoop Data management system 1,811 769 3,041 25.7 34.5 28.6 38.6 27.5 37.4
NetBeans IDE platform 5,122 1,273 5,029 54.8 81.5 61.1 86.2 57.3 84.9

they can still promote the value-flow analysis. We also count the non-anchored containers in each
project and measure the distribution of anchored containers in different types and frameworks.

Table 3 shows the numbers of anchored containers in the column #AC. The result shows that
anchored containers widely exist in real-world programs. On average, there are 1.13 anchored con-
tainers in 1 KLoC, which demonstrates their prevalence. Particularly, over 1,000 anchored contain-
ers exist in the project NetBeans, posing the necessity of analyzing them precisely and efficiently.
Besides, The column #NAC in Table 3 shows the number of non-anchored containers. Although
non-anchored containers take up a larger proportion in real-world programs, the orientation anal-
ysis can still effectively improve the precision of many value-flow clients, which will be evidenced
by the answers to other research questions.

Figure 13 shows more details of the proportions of various kinds of containers. First, Figure 13(a)
reveals that position-dependent containers, such as ArrayList and LinkedList, are slightly more
frequently used than value-dependent containers, such as HashMap and Dictionary. Second,
Figure 13(b) shows that position-dependent containers take up 70.8% of all the anchored containers,
while the proportion of value-dependent containers is only 29.2%. The phenomenon mainly comes
from the common practice of developers, as they often add or remove an element at the beginning
or the end of a position-dependent container, and use more non-literal keys in a value-dependent
container. Third, Figure 13(c), (d), and (e) show the proportions of anchored and non-anchored
containers in three frameworks. Specifically, the collections in JCF, which are general-purposed
containers, are often used with non-literal keys or constant indexes in a flexible manner, and the
proportion of non-anchored containers reaches 72.3%. In contrast, 83.7% Java EE data structures
are anchored containers, as they are mostly used to store specific messages, e.g., network requests
and responses, which often take literals as keys.

Answer to RQ1: Anchored containers widely exist in real-world programs. There are 1.13
anchored containers in 1 KLoC of the experimental subjects. The proportions of anchored
containers in the JCF collections, Java legacy collections, and Java EE data structures are
27.7%, 65.7%, and 83.7%, respectively.
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Fig. 13. Proportions of different kinds of containers. (a) Proportions of position-dependent and value-

dependent containers. (b) Proportions of anchored position-dependent and anchored value-dependent con-

tainers. ((c), (d), and (e)) Proportions of anchored and non-anchored containers in different frameworks.

9.2 Constructing Value-flow Graph

To evaluate the scalability of Anchor, we investigate the overhead of Anchor in the VFG con-
struction. Specifically, we set up two configurations to construct the VFG. In the first configuration
(VFG-O), we perform the memory orientation analysis to utilize the anchored containers, while in
the second configuration (VFG-S), we smash the container objects as many existing value-flow an-
alyzers [29, 49]. To better quantify the overhead of analyzing container semantics, we also add the
configuration VFG-N as a blank control group, in which we do not analyze container interface calls.

The columns VFG-N, VFG-O, and VFG-S in Table 3 show the overhead of time and memory
under the three configurations, respectively. We find the following:

• The memory orientation analysis introduces negligible overhead compared with the analy-
sis based on smashing containers. Both of them finish the construction for any project in
62 minutes with 86.2 G peak memory. For the projects with less than 1 MLoC, two analyses
only demand around 18 minutes and 25 G memory.
• Compared with the analysis under VFG-N, the memory orientation analysis consumes at

most 24.9% more time and 20.3% more memory. When analyzing the project NetBeans with
5.12 MLoC, Anchor only spends extra 6.3 minutes and 4.7 G peak memory on the precise
reasoning of container semantics.
• We also adopt regression analysis to study the observed scalability under VFG-O, of which

the result is shown in Figure 14. The R-squared values for time and memory are 0.9631 and
0.9691, respectively, which indicates the overhead grows nearly linearly at a gentle rate and
shows the potential scalability of Anchor.

The scalability of Anchor in the VFG construction benefits from two major designs. First, we
perform a delay reasoning of value-flow paths, and only encode the path condition symbolically
in the VFG without any explicit solving process. Second, fewer program facts are generated in
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Fig. 14. Scalability of the VFG construction under the configuration VFG-O.

the abstract state M in the presence of the strong updates, which makes the abstract transform-
ers possibly avoid more computation. The observed linear scalability promotes the practicality of
Anchor to analyze the large-scale programs in the real world.

Last, it is worth mentioning that we construct the VFG for the whole program, which can sup-
port a variety of value-flow clients. When we focus on a specific client, e.g., the NPE detection,
we could concentrate on particular value flows, and only analyze containers with specific features,
such as the containers that may contain null values. However, our experimental data shown in
Table 3 and Figure 14 has demonstrated the low overhead of the memory orientation analysis.
Moreover, Anchor essentially analyzes non-anchored containers as pointers by container smash-
ing and regards anchored containers as data structures with a set of fields, which does not introduce
significant overhead theoretically.

Answer to RQ2: Anchor features the linear scalability in the value-flow graph construction
for real-world programs and finishes the analysis in 62 minutes with 86.2 GB of peak memory
for the program with 5.12 MLoC.

9.3 Answering Thin Slicing Queries

To show the precision improvement in the thin slicing, we follow the previous studies [4, 68]
and compare the sizes of thin slices under two configurations, i.e., TS-O and TS-S, in which we
perform the memory orientation analysis and smash the container objects, respectively. Due to the
soundness of two thin slicers, a smaller average size of thin slices indicates a higher precision of the
thin slicer. For each project, we randomly select 100 pairs of an access interface call and its return
value as the seeds. Particularly, we do not solve constraints to make the analysis light-weighted in
the scenario of program understanding.

Figure 15 shows the decrease ratio of thin slice sizes under TS-O over the ones of TS-S, in
which project IDs are assigned based on the project sizes. It is shown that 17.1% fewer producer
statements are discovered under TS-O than TS-S on average. Besides, we compare the thin slices
generated under two configurations. It is found that the thin slices generated under TS-S contain
all the statements in the slices generated under TS-O. Therefore, the size decrease of the thin slices
indicates that Anchor provides more precise slices under the configuration TS-O effectively, which
benefits from the precise VFG constructed by the memory orientation analysis. Therefore, we
conclude that the memory orientation analysis brings better precision in thin slicing than smashing
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Fig. 15. Decrease ratio of slice sizes under TS-O over TS-S.

containers. The more precise thin slices can provide better insight for the developers to understand
and debug the program in the development.

Answer to RQ3: Anchor eliminates 17.1% producer statements that are spurious on average
for thin slicing in real-world projects compared with the thin slicer smashing containers.

9.4 Detecting Value-flow Bugs

Following the previous experiments, we set up the configurations Taint-O/Taint-S and
NPE-O/NPE-S for the detections of the two types of bugs, respectively.

9.4.1 Detecting Taint Vulnerabilities. To evaluate the effectiveness of Anchor in the taint vul-
nerability detection, we choose the OWASP benchmark projects [43], which is a Java test suite
with thousands of exploitable test cases of taint vulnerabilities. The vulnerabilities covered by
OWASP benchmark projects include cross-site scripting attacks, information leakage, improper
error-handling attacks, and so on. Particularly, we select all the programs using containers as
the experimental subjects, only concentrating on quantifying the benefit of analyzing container-
manipulating programs.

We evaluate Anchor upon the collected subjects under two configurations Taint-O and
Taint-S, in which we perform the memory orientation analysis and the container mashing, re-
spectively. The results show that Anchor discovers all the 352 taint flows through containers
with no false positive under Taint-O, while the false-positive ratio reaches 31.0% (158/510) un-
der Taint-S. Therefore, the memory orientation analysis can significantly improve the precision
of analyzing the OWASP benchmark projects, demonstrating the practical use in detecting taint
vulnerabilities in the presence of containers.

9.4.2 Detecting Null Pointer Exception. To measure the precision and scalability of the NPE
detection, we evaluate Anchor upon the real-world projects under the configurations NPE-O and
NPE-S. Particularly, we count the NPE reports caused by the value flows through containers to
show the impact of reasoning container semantics. We run the prominent bug detector Infer to
compare the overhead and precision [69, 70]. Table 4 shows the numbers of reported bugs, false
positives, and the overhead, based on which we summarize the following findings.

Precision and Overhead. Overall, Anchor analyzes the experimental subjects with high ef-
ficiency and scalability. First, the reports of the analysis under NPE-O are subsumed by the ones
under NPE-S, and the false-positive ratios are 9.1% (2/22) and 66.7% (40/60), respectively. Upon the
submission, 12 of the true positives had been confirmed by the developers [44]. Besides, it is worth
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Table 4. NPE Detection Result

Project
NPE-O NPE-S Infer

Time (min) Mem (GB) #FP/#R Time (min) Mem (GB) #FP/#R Time (min) Mem (GB) #FP/#R
GraphJet 0.8 1.3 0/0 0.8 1.2 1/1 0.5 0.8 2/2
mapper 1.2 1.9 0/0 1.1 1.7 1/1 1.0 1.9 1/1
light-4j 3.8 2.3 0/2 3.1 2.7 0/2 4.9 1.6 2/4
roller 4.9 4.1 0/0 4.3 3.8 1/1 2.1 5.7 4/4
MyBatis 9.3 6.0 0/1 8.9 7.4 2/3 7.2 10.1 5/6
sofa-rpc 7.6 5.4 0/1 7.9 6.1 1/2 5.6 4.3 2/2
Glowstone 14.0 7.5 0/0 11.9 8.3 1/1 12.9 13.7 3/3
DolphinScheduler 12.8 6.3 0/0 12.5 6.5 0/0 10.2 8.9 1/1
atlas 14.6 8.1 0/0 13.5 9.3 2/2 NA NA NA
Struts 17.9 9.0 0/1 20.1 9.6 0/1 NA NA NA
dubbo 18.7 9.3 0/4 19.3 9.5 0/4 NA NA NA
IoTDB 26.5 14.5 0/2 26.2 17.8 1/3 28.4 12.1 5/7
Spring-Boot 31.3 16.8 1/1 30.5 16.1 2/2 34.6 20.7 3/3
Cassandra 52.4 21.9 0/2 49.8 21.4 3/5 43.2 33.9 6/7
Hibernate-ORM 66.5 35.2 0/0 69.6 38.1 1/1 51.1 46.3 4/4
HBase 69.9 42.4 0/0 67.1 39.5 1/1 NA NA NA
Hadoop 141.7 66.7 0/4 127.8 73.9 8/12 113.7 89.5 14/17
NetBeans 297.3 121.5 1/4 271.4 139.6 15/18 OOM OOM OOM

2/22 40/60 53/62

NA means we fail to run Infer on the experimental projects.
OOM means Infer runs out of memory.

noting that most of the bugs are discovered in the popular infrastructure projects, such as MyBatis,
Struts, and Hadoop, showing the impact of Anchor for infrastructure reliability.

Second, Anchor finishes analyzing the project NetBeans with 512.2 MLoC in 5 hours within
121.5 GB peak memory under NPE-O. An interesting finding in the evaluation is that the mem-
ory orientation analysis reduces the overhead in several projects, such as sofa-rpc, Struts, and
Hibernate-ORM. The major reason is that the strong updates introduce fewer value-flow facts,
which further form fewer value-flow paths, alleviating the overhead of the graph traversal and
constraint solving. Also, our work can be further improved by reducing the time and memory
overhead. In the evaluation, we only measure the extra overhead introduced by our approach.
The techniques of reducing the overhead of static analyzers can benefit Anchor seamlessly in an
orthogonal manner [48].

Case Study. We show two typical NPE reports discovered under the two configurations.
Figure 16 shows a confirmed NPE bug in the project dubbo, which is reported under NPE-S and
NPE-O. If the name of the property is equal to “true,” then a null value is inserted into the ArrayList

object at line 6 and finally dereferenced in the traversal. Under the configuration NPE-S, Anchor
maintains the ownership of the container object pointed by providers, and thus finds that provider

can be null in the traversal, which causes an NPE at line 13. Meanwhile, Anchor also reports the
NPE under the configuration NPE-O due to its soundness. It is also worth mentioning that Figure 16
shows a typical pattern of container usage. Specifically, the elements are dereferenced in the tra-
versal under conditions unrelated to their indexes. Even if the container is non-anchored, Anchor
does not report a false positive under NPE-O as long as there exists a null value in the container.

Figure 17 shows two false positives in the project NetBeans reported under the configuration
NPE-S. The values paired with “WORD” and “IS_WHOLE” are not null, while the analysis does not
distinguish them from the null value paired with “BLOCK,” causing two false positives at lines 6
and 7. In contrast, Anchor avoids reporting the false positives, as the HashMap object is an an-
chored container, of which the index-value correlation is precisely tracked by Anchor. Figure 17
demonstrates a common usage pattern of anchored value-dependent containers, which often ex-
ists in the configuration modules of a project. The values paired with literal keys are produced by
different expressions introducing different program facts, which finally yields specific value-flow
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Fig. 16. A confirmed NPE in the project dubbo.

Fig. 17. Two false positives in NetBeans reported under the configuration NPE-S.

bugs at particular keys. Our memory orientation analysis effectively identifies this pattern and
analyzes index-value correlations precisely, further supporting precise value-flow bug detection.

Comparison with Infer. The column Infer in Table 4 shows that Anchor and Infer share
the similar overhead. Infer introduces 53 false positives in 62 reports, and all the true positives
reported by Infer are also detected by Anchor. The fundamental reason of its high false-positive
ratio is that Infer cannot support precise container reasoning, e.g., it reports the two false posi-
tives in Figure 17. Also, Infer cannot fully track path conditions when the path variables do not
collude with preconditions, introducing the infeasible value flows in the NPE detection. After mul-
tiple attempts, Infer still fails to analyze several projects because of the crash and out-of-memory,
denoted by NA and OOM, respectively. In contrast, Anchor finishes analyzing all the projects in
the given budget of time and memory, showing the superiority in terms of scalability.

There are other static analyzers detecting NPEs in real programs [71]. Particularly, Infer ana-
lyzes the data structures with bi-abduction reasoning and achieves the field-, flow-, and context-
sensitivity with good scalability, sharing the similar style of our work. Thus, we select Infer for
comparison to show the advantages of Anchor. We also seek to evaluate Compass [35] while it
is outdated for the operating systems we can set up. Also, Compass is proposed to analyze C/C++
programs, and its implementation does not support analyzing Java programs.

Answer to RQ4: Anchor detects all the taint vulnerabilities in the OWASP benchmark
programs using containers with no false positive. Also, it uncovers 20 null pointer exceptions
in 18 real-world Java programs with 9.1% as its false-positive ratio and finishes analyzing the
program with 5.12 MLoC in 5 hours.
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9.5 Threats to Validity

There are two major threats to the validity of our approach. The first threat to the validity is
whether our approach can be generalized to the containers in a variety of third-party libraries.
Actually, our memory orientation analysis only relies on the specifications of container interfaces.
As explained in Section 8, the developers can classify the semantics of the interfaces and abstract
them by the container interfaces in the language syntax defined in Figure 5. This process does not
involve much expert knowledge, and thus supports the generality of our approach.

The second threat to the validity of our work is whether our approach supports a sound value-
flow client analysis. Recall that Theorem 6.2 and Corollary 6.1 guarantee the soundness of value-
flow analysis. For a specific client, such as the NPE detection, we can discover all the value-flow
paths and collect the path conditions by traversing the VFG. However, we set the time budget of
solving a constraint in the implementation, possibly discarding feasible paths when the solver fails
to solve the path conditions in 10 s, which might introduce unsoundness to a specific value-flow
client.

9.6 Discussion

This section presents more discussions on the benefit of anchored containers, the limitations, and
future work.

Benefit of Anchored Containers. The experiments demonstrate that the anchored containers
enable the analysis to obtain high precision with low overhead. Although precise reasoning of
general containers requires constructing and solving the constraints in a more sophisticated logic
theory, the modification patterns of the anchored containers permit us to specialize the container
axioms [72] and acquire the value flows based on the modification history. The combined domain
in Section 5 essentially extends the solving procedure and supports constructing more precise VFG
in the memory orientation analysis. Meanwhile, the experiment of NPE detection shows that the
anchored containers can make the precision go arm in arm with scalability in several analyses of
the subjects. As guaranteed by Theorem 6.1, more facts are reduced by the strong updates in the
subdomains in the presence of the anchored containers, which prevents the reachability analysis
from examining spurious value-flow paths. The phenomena have been discussed in the recent
static analyses [61, 62]. The anchored containers play an important role in unleashing the precision
and efficiency of the analysis simultaneously.

Limitation of Anchor. Our study shows the effectiveness of Anchor in analyzing container-
manipulating programs, but several limitations still exist in our current approach.

• Anchor only analyzes the memory layout of the containers, and it does not concern other
properties of containers, such as the size, the emptiness, and insertion order, which also affect
the value-flows in the program. Although we have not found the spurious results caused by
the unawareness of these properties in the experiment, it can indeed decrease the precision
and recall of Anchor theoretically.
• Anchor takes the manually written container specifications as input to identify the con-

tainer types and the behavior of their interfaces. For example, we manually investigate all
the class definitions in JavaEE to collect the container-like data structures in Table 2. How-
ever, the manual annotation often involves a huge laborious effort, especially in the presence
of numerous third-party libraries [32, 73].
• Anchor does not reason the index-value correlations of non-anchored containers, which

introduces the precision loss when analyzing the value flows through them. As shown in
Figure 13(c), there is a large proportion of JCF collections that are non-anchored. Although
the anchored containers can improve the precision of analyzing their ownership, their
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index-value correlations are still blurred in the memory orientation analysis. This prevents
Anchor from further improving the precision of several value-flow analyses, such as thin
slicing.

Future Work. It could be promising to explore the following directions to design an automatic,
fast, and precise static analyzer for container-manipulating programs. First, it would be meaningful
to track more container properties to obtain more precise value flows. For example, the size of a
container could support more precise reasoning of the path condition if a branch condition involves
its size. Second, the automatic inference of container specifications would enable the static analyzer
to identify the container types and analyze client programs in a more automatic manner. More data
structures in the third-party libraries, such as Apache Commons Collections [74], Trove [75], and
Google Guava Collection [76], could be discovered and identified as containers, which benefits
the subsequent analyses [31, 32, 35]. Third, it would be worth designing more advanced analyses
to reason the non-anchored containers. The relations among the indexes of container interface
calls could support discovering more precise value flows in general cases. For example, a must-not
alias analysis would enable us to prune spurious value flows through non-anchored containers
according to their keys, which could further increase the precision of value-flow analysis. Fourth,
it would also be a promising direction to design an on-demand VFG construction algorithm. The
values unrelated to a client can be skipped so that we can safely ignore specific value flows through
containers, which can further decrease the overhead of the analysis.

10 RELATED WORK

There is a large body of literature touching the topic of our work, ranging from the heap abstraction
to the SMT solving optimization. We discuss each line of the studies in detail as follows.

10.1 Heap Abstraction

Containers are mostly allocated dynamically in the heap. Analyzing heap-manipulating programs
statically relies on a bounded abstract heap model [50]. A common heap abstraction is allocation
site-based abstraction, which summarizes the heap objects allocated by the same statement into
an abstract object [30, 77, 78]. We adopt allocation site-based abstraction to bound the number of
abstract objects and guarantee the termination. Another heap abstraction is based on generic pred-
icates, merging the objects that satisfy certain predicates [25, 26, 79–81]. One typical instantiation
is the 3-valued logic analyzer (TVLA) [79, 80]. It defines focus and coerce operators for semantic
reduction [38] to obtain more precise 3-valued structures. Anchor’s witness operators bear simi-
larities to the coerce operator [51]. In contrast, a coerce operator depends on predefined rules of
fundamental inconsistency, while witness operators only utilize the facts in the subdomains and
do not rely on manual configurations.

10.2 Value-flow Analysis

Value-flow analysis resolves the program dependencies to improve the effectiveness of static analy-
ses [29, 41, 59]. It was initially applied in program optimization and debugging by offering def-use
relations. With the promotion of the research communities, it has become a fundamental tech-
nique of static program analysis and verification [82–84]. Its precision and efficiency are highly
dependent on the underlying pointer analysis. To achieve better precision with lower overhead,
many value-flow analyses adopt on-demand pointer analyses so that unnecessary pointer facts
are not calculated in the value-flow propagation [30, 41, 78]. However, they do not support precise
analysis of containers, and smash containers into the sets of objects [29, 31, 45]. Anchor is the
first practical value-flow analysis supporting precise container analysis, and its principle can be
applied to other techniques [29, 45, 84].
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10.3 Data Structure Verification

Another line of efforts aims to verify whether the data structure implementation obeys its spec-
ification. Shape analyses, for example, address this problem by inferring or verifying advanced
properties [14, 85, 86]. They utilize predicates to describe the linkage property, such as reachabil-
ity, cyclicity, and treeness [36, 79, 87]. Other sophisticated properties, including the size [51, 88–90],
inclusion relation [91, 92], and numeric values [93, 94], are also significant concerns of many shape
analyses. The properties contribute to data structure verification, e.g., verifying if the add inter-
face inserts an element at the end of the list [95–97]. In this work, we assume that the interfaces
conform to their specifications and analyze the client-side programs with the specifications. Data
structure verification and client-side program analysis are two orthogonal lines of research work,
and the combination provides a more reliable guarantee of the correctness of the programs using
containers.

10.4 Specification Inference

It has always been a popular and fundamental problem to infer the data structure specifications.
Basically, there are two typical kinds of efforts tracking the problem. The first kind of approaches,
including shape analyses [14, 86], abstracts the properties of the data structures by logical for-
mulae, and reasons the specification of each interface of the data structures symbolically. The
specifications obtained by symbolic reasoning are sound, while they often only concern the re-
strictive forms of the linkage properties [79] and numeric properties [95], and are also quite brittle
in real-world programs. The second kind of approaches synthesizes the data structure specifica-
tions by leveraging learning techniques [73, 98]. Specifically, they utilize the runtime states of the
data structure interfaces [98] or the usage of data structures in the client programs to infer the
possible specifications [73]. However, they often rely on a given template for the inference, not
considering the numeric properties in most cases. We believe it is meaningful to identify whether
a data structure is a container and determine the more expressive behavior of its interfaces. A va-
riety of container analyses, such as container-aware pointer analysis [31, 35] and container type
optimization [99], can benefit from the specifications inferred automatically.

10.5 SMT Solving Optimization

There have been several studies optimizing the SMT solving process in the program analysis
based on the program information. One typical category of the studies leverages the semantic
information to assist the SMT solving [100–103]. For example, the interval and data-dependency
information are utilized to guide the branching heuristic in the SAT solving phase [101]. Another
typical category of the studies achieves the program transformations that preserve the semantic
equivalence, and constructs the constraints based on the new program, unleashing the power of
the optimized constraint solvers to improve the efficiency of the solving [72, 104]. For instance,
when the array only contains the constant values, the array operations are transformed to
the comparison of the indexes, which can be represented in the bit-vector theory [72]. The
transformation is essentially the process of applying array axioms for the particular kind of
arrays, making the analysis benefit from the efficiency of the solving procedure of the bit-vector
theory. Anchor bears similarities to the idea in Reference [72]. Specifically, it specializes the
container axioms for the anchored containers to simplify the constraints and enables a precise
value-flow analysis without solving the sophisticated formulae in the combined theory of linear
integer arithmetic and uninterpreted functions [35]. It is a promising direction to discover
and leverage specific operation patterns to perform efficient and precise reasoning on the data
structures.
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11 CONCLUSION

We have described Anchor to analyze value flows for containers. Anchor identifies anchored
containers automatically for strong updates in the memory orientation analysis and discovers the
precise value flows through containers, promoting a variety of client analyses. As a result, it pro-
duces more precise thin slices and uncovers 20 NPEs with only two false positives. It outperforms
the state-of-the-art value-flow analyses and container reasoning techniques in terms of precision
and scalability, and features in the ability to analyze millions of lines of code. We expect the under-
lying insight of Anchor to benefit various clients of analyzing container-manipulating programs,
such as program understanding and bug detection.
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