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Complex safety-critical systems require multiple models for a comprehensive description, resulting in error-prone development
and laborious verification. Bidirectional transformation (BX) is an approach to automatically synchronizing these models.
However, existing BX frameworks lack formal verification to enforce these models’ consistency rigorously. This paper
introduces KBX, a formal bidirectional transformation framework for verified model synchronization. First, we present a
matching logic-based BX model, providing a logical foundation for constructing BX definitions within the K framework.
Second, we propose algorithms to synthesize formal BX definitions from unidirectional ones, which allows developers to
focus on crafting the unidirectional definitions while disregarding the reverse direction and missing information recovery for
synchronization. Afterward, we harness K to generate a formal synchronizer from the synthesized definitions for consistency
maintenance and verification. To evaluate the effectiveness of KBX, we conduct a comparative analysis against existing
BX frameworks. Furthermore, we demonstrate the application of KBX in constructing a BX between UML and HCSP for
real-world scenarios, showcasing an 72% reduction in BX development effort compared to manual specification writing in K.

CCS Concepts: • Computing methodologies→Modeling methodologies; • Software and its engineering→ Formal
software verification.

Additional Key Words and Phrases: Bidirectional Transformation, Formal Verification, Matching Logic

1 INTRODUCTION
Modeling and verifying safety-critical systems [Kulik et al. 2022] can be a complex task that involves the use
of diverse languages and abstraction levels. This complexity arises from the limitations of single languages,
the complexity of systems, and the diversified requirement of different standards (e.g., ISO-1540812 and IEC-
61580 [Bell 2006]). For instance, the famous verified microkernel seL4 [Klein et al. 2014, 2010] proposes abstract
specification in Isabelle, executable prototype in Haskell, and high-performance implementation in C.
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Unfortunately, applying multiple models needs extra effort to synchronize models and verify their consistency.
For example, seL4 introduces two steps to achieve a verified system. First, it transforms informal programs written
in Haskell and C into the Isabelle/HOL formal framework. Second, it uses refinement verification to ensure the
models accurately represent the same system. Despite these efforts, any changes to the Isabelle specification
still require manual adjustments in Haskell and C. This repetitive and error-prone process requires repeated
refinement verification to meet the stringent traceability requirements of safety-critical systems and international
standards like ISO-15408. Moreover, this process becomes increasingly cumbersome, especially for developers not
proficient in multiple languages, and is exacerbated by the growing number of models and iterations involved.

To tackle this problem, our vision is a formal bidirectional transformation (BX) framework. By inputting a
formal consistency definition betweenm‘odels,z this framework produces synchronizers formodel synchronization
and formal proofs for rigorous consistency verification between the synchronized model pairs. Specifically, given
model pair < and =, the synchronizer returns an =′ (or <′) that is consistent with < (or =) according to the
predefined definition. Consistent parts in = (or<) remain unchanged, while inconsistent parts are updated in
=′ (or <′) to achieve consistency. Models with incorrect syntax or semantics will not generate a consistent
model, as the formal definition specifies consistency only between models with correct syntax and semantics.
The synchronization process is governed by the predefined formal definition and validated by the generated
proof. This approach allows developers to focus on their familiar models while ensuring the rigorous evaluation
required for safety-critical systems. However, verified model synchronization in diverse languages and abstract
levels via BX is extremely challenging, considering the following important criteria:

1. Expressiveness. Complicated synchronizations necessitate expressiveness to specify intricate consistency
between heterogeneous models. To achieve this, BX frameworks should help developers focus on consistency
without being burdened by extraneous concepts or implementation details. Moreover, there should be ample
evidence demonstrating that developers can effectively construct diverse transformations using BX frameworks.
However, the existing BX frameworks [Anjorin et al. 2020; Bettini and Efftinge 2016; Buchmann 2018; Buchmann
et al. 2022; Cicchetti et al. 2011; Ko et al. 2016; Matsuda and Wang 2018; Weidmann et al. 2019] require provided
manually parsers and printers, introducing extra implementation work and concept of abstract syntax trees.
Additionally, few evidence shows that they can describe sophisticated model BX (e.g., UML and concurrent HCSP3

BX) in practice.
2. Trustworthiness. Rigorous consistency verification for safety-critical systems demands a formal method

with a small set of codes or other elements that must be trusted, known as the trust base. However, existing BX
frameworks lack a formal proof system for consistency verification. Moreover, the existing formal frameworks
such as Coq4, Isabelle5, Lean6, andK7 offer rigorous formal consistency verification but lack solutions for verified
model synchronization. First, they require a uniform BX model that can capture a reasonable BX within their
theories. Second, they need synthesis algorithms to provide a minimized formal specification as a small trust
base to generate a formal synchronizer. This synchronizer not only achieves model synchronization, as existing
BX frameworks do, but also offers synchronization that adheres to a formal definition, supported by proofs.

Our key idea comes from the work of Chen et al. [2021a], which introduced the formal verification of the
program execution via proof generation. By applying this approach, theK framework can automatically verify that
the transformation complies with the established formal transformation definition. In addition to its verification
3HCSP (hybrid communicating sequential processes) [Chaochen et al. 1996; Liu et al. 2010] is an extension of CSP with ordinary differential
equations, and it is widely used in verifying cyber-physical systems such as train control systems [Zou et al. 2015, 2013], cruise control
system [Xu et al. 2022], and Mars lander [Zhan et al. 2021].
4https://coq.inria.fr/, accessed on July 1, 2024
5https://isabelle.in.tum.de/, accessed on July 1, 2024
6https://lean-lang.org/, accessed on July 1, 2024
7https://github.com/runtimeverification/k, accessed on July 1, 2024
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capabilities, the K framework possesses a language-oriented nature, enabling the construction of intricate formal
semantics intuitively. This feature has led to numerous programming languages, including C [Hathhorn et al.
2015], Java [Bogdanas and Roşu 2015], and JavaScript [Park et al. 2015], having their complete formal semantics
defined in the K framework, rather than just partial semantics in other formal frameworks. Consequently, we
can construct formal unidirectional transformation definitions within K to generate a verified transformer for
model transformation while ensuring compliance with the formal definition.

Nevertheless, formal unidirectional transformation cannot deliver missing information recovery8 and reverse
transformation, as offered by bidirectional transformation for synchronization. Therefore, this paper introduces
KBX, an extension to the K framework, enabling formal BX for verified model synchronization. To achieve this,
we employ three steps: (1) Capture BX models using matching logic from K to facilitate the construction of
formal BX K definitions. (2) Design formal BX definition synthesis algorithms to generate formal synchronizers
from unidirectional transformation definitions. The BX definition incorporates both forward and backward
transformation definitions to enable missing information recovery for the synchronized target. (3) Use formal
synchronizers to maintain and verify the consistency of models simultaneously.

We initiate our evaluation of KBX by comparing its development efficiency and synchronization trustworthiness
with current BX frameworks. This analysis highlights KBX’s efficacy in constructing trustworthy BX programs.
Next, we explore KBX’s formal expressiveness and consistency verification reliability, demonstrating that we
impose limited constraints on the expressiveness of K and maintain a small trust base during consistency
verification. Lastly, we illustrate KBX’s practicality in real-world scenarios by establishing the first formal BX
between HCSP and UML. During the construction of this BX, KBX reduces the code size by 72%, compared with
manual writing BX definitions.

To summarize, this paper makes the following main contributions:
• We present KBX, the BX framework for verified model synchronization, which generates formal synchro-

nizers from formal unidirectional transformation definitions.
• We introduce a matching logic-based BX model to establish the relation between unidirectional definitions

and BX definitions, as well as to specify the laws of BX definitions for synchronization. Furthermore,
we present BX synthesis algorithms aimed at improving consistency verification trustworthiness and
accelerating BX development. Based on the synthesis algorithms, we generate formal BX definitions
from unidirectional ones in K, producing formal synchronizers for simultaneous synchronization and
consistency verification.
• We evaluate KBX’s efficacy in synchronization and consistency verification. Additionally, we propose

the first HCSP and UML BX between HCSP programs and PlantUML sequence diagrams for cyber-
physical systems based on KBX, demonstrating its practical applicability in real-world scenarios. The
implementation and evaluation of KBX can be accessed at https://github.com/Stevengre/kbx-public.

2 PRELIMINARIES
This section introduces the languages used in our motivating example (Section 3.1) and covers the foundational
concepts of this work, including bidirectional transformation, matching logic, and the K framework.

2.1 PlantUML and HCSP: Languages Used in Motivating Example
During the development of safety-critical systems, engineers often employ different languages to balance in-
tuitiveness and formality in system designs, providing the various models required by rigorous standards like

8For example, while a UML sequence diagram is a graph with colors, HCSP is not a graphical language and does not convey color information.
This color information is missing in HCSP. However, during synchronization from HCSP to UML, it is necessary to recover the color
information for UML.
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Light

Light

Pedestrian

Pedestrian

"Light is green"

"Run 10 meters"

op t

status := 0

"Red for 20 seconds"

"Light is green"

PlantUML program UML diagram

1

2

3

5

6

7

Light -[#green]> Light : "Light is green"

Pedestrian -[#blue]> Pedestrian : "Run 10 meters"

opt

    Pedestrian -[#black]> Light : status := 0

    Light -[#red]> Light : "Red for 20 seconds"

    Light -[#green]> Light : "Light is green"

end

4

Fig. 1. A Sequence Diagram in PlantUML for Pedestrian Interaction with Traffic Signals.

ISO-15408 and IEC-61580. In our motivating example, we use two languages: PlantUML9 and HCSP [Chaochen
et al. 1996; Liu et al. 2010]. PlantUML is a text-based language for creating intuitive UML diagrams, while HCSP
is a formal language for specifying, simulating, and verifying hybrid systems.

PlantUML is widely used in software engineering for its simplicity in creating UML diagrams, including class,
sequence, and state diagrams. In our example, we focus on sequence diagrams to model the communication
between system components.

Fig. 1 shows a PlantUML-generated sequence diagram illustrating a pedestrian-controlled traffic light system.
The diagram includes two entities: a “Pedestrian” and a “Light”. Initially, the “Light” is green, allowing cars to
pass. After walking ten meters, the “Pedestrian” presses a button, changing the light to red for 20 seconds to
allow safe crossing. The light then returns to green. This interaction is enclosed within an “opt” block, indicating
that the initial button press triggers the subsequent actions.

sequence-diagram F (sequence-statement\n )*
sequence-statement F entity -[color ]> entity (: string)?

| ’ anything ’
| loop string sequence-diagram end
| opt (string)? sequence-diagram end
| alt string sequence-diagram (else sequence-diagram)? end
| group string sequence-diagram end

Fig. 2. Syntax for PlantUML’s Sequence Diagram.

Fig. 2 illustrates the syntax for PlantUML’s sequence diagrams, which include arrows connecting entities,
comments, and control structures. Arrows can point to the same entity, indicating a self-initiated action, or to
different entities, signifying an interaction between them. Comments provide descriptive text for the diagram.
9https://github.com/plantuml/plantuml, accessed on July 1, 2024
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PlantUML’s control structures—such as loop for repeating sequences, opt for optional sequences, alt for alternative
sequences, and group for grouping sequences—enable the modeling of complex behaviors and the creation of
blocks in diagrams.

While the UML diagrams are clear and intuitive, effectively describing system behaviors and component
interactions, they fall short in precisely defining these behaviors. UML is a semi-formal language lacking the
formal semantics necessary to specify, simulate, and verify system behaviors rigorously. To address this limitation,
we introduce the HCSP language.

HCSP (Hybrid Communicating Sequential Processes) [Chaochen et al. 1996; Liu et al. 2010] exntends Hoare’s
Communicating Sequential Processes with differential equations, time constructs, interruptions, and more. It
allows for the description of complex parallel and communicable components with both continuous and discrete
behaviors. As a result, HCSP is widely used for modeling and verifying cyber-physical systems, such as train
control systems [Zou et al. 2015, 2013], cruise control systems [Xu et al. 2022], and the Mars lander [Zhan et al.
2021].

1 Light ::= 9 Pedestrian ::=
2 t := 0; 10 s := 0;
3 log ( "Light is green") ; 11 log ( "Run 10 meters" ) ;
4 status := 1; 12 <s ' = 1 & s <= 10>;
5 (button ? status −−> 13 button ! 0;
6 log ( "Red for 20 seconds") ; 14

7 <t ' = 1 & t <= 20>; 15

8 status := 1;) ; 16

Fig. 3. HCSP Programs for Pedestrian Interaction with Traffic Signals.

Fig. 3 refines the pedestrian-controlled traffic light system using HCSP. The PlantUML entities are modeled as
HCSP processes. The “Light” process includes a time variable “t” and a status variable “status” (0 for red, 1 for
green). The “Pedestrian” process includes a distance variable “s”. Informal information from PlantUML is retained
in the log, while formal behaviors are specified using HCSP statements, such as assignments (:=) and continuous
behaviors with differential equations and interruptions (e.g., <t’ = 1 & t <= 20>). Communication between entities
is modeled as individual actions on channels, such as receiving and sending status values through the button
channel (button ? status and button ! 0, respectively).

The concrete syntax of HCSP, shown in Figure 4, consists of features described in [Liu et al. 2010] and includes
additional syntactic sugars for convenience. HCSP programs are composed of a list of parallel HCSP processes
whose behaviors are described by a sequence of HCSP statements. The HCSP statements include: (1) skip: a
placeholder for skipping; (2) assignment; (3) wait: a convenience for continuous behavior, waiting for a certain
time; (4) log: recording information; (5) communication statements: sending and receiving values from channels
across processes; (6) if and if-then-else statements; (7) loop and loop-until statements; (8) interrupts caused
by communication; (9) continuous behaviors described by differential equations; and (10) the combination of
continuous behaviors and interrupts.

ACM Trans. Softw. Eng. Methodol.

 



6 • Zhao et al.

hcsp-program F (hcsp-process )*

hcsp-process F id ::= (hcsp-statement ;)+

hcsp-statement F skip | id := arithmetic-expression | wait ( int ) | log ( string )
| hcsp-io | bool-expression -> hcsp-statement
| if boolean-expression then (hcsp-statement ;)* else (hcsp-statement ;)* endif
| ( (hcsp-statement ;)* ) ** | ( (hcsp-statement ;)* ) { bool-expression } **
| interrupts | continuous-behavior | continuous-behavior |> (interrupts )

hcsp-io F id ? id | id ! arithmetic-expression
interrupts F interrupt ($ interrupt)*
interrupt F csp-io –> (csp-statement ;)*

continuous-behavior F < differential-equations & bool-expression >

Fig. 4. Syntax for HCSP.

In summary, combining UML and HCSP is an effective approach for developing safety-critical cyber-physical
systems. This choice is endorsed by our industrial partners, motivating this paper to address issues arising
from the use of multiple languages and models, and to meet the high traceability requirements (consistency
between models) mandated by standards like ISO-1540812 and IEC-61580. Our motivating example is detailed in
Section 3.1.

2.2 Bidirectional Transformation
Bidirectional transformation (BX) enables the conversion of a system between two representations and maintains
the synchronization of changes between them. For instance, it enables the synchronization of system designs
between HCSP and plantUML by transforming one into the other while preserving information that is unique
to each (i.e., missing information), such as the arrow colors in UML and the precise expressions in HCSP. A
prominent theory elucidating bidirectional transformation is referred to as symmetric lenses [Hofmann et al.
2011], which permits missing information on both ends of such transformations. The symmetric lens is defined as
follows.

Definition 1 (Symmetric Lens). Lens ℓ of model sets " , # (denoted as ℓ ∈ " ↔ # ) has three parts: a set of
complements � , a distinguished element<8BB8=6 ∈ � , and two functions

?DCA : " ×� → # ×� ?DC; : # ×� → " ×�
which satisfy the following inference rules as round-tripping laws:

?DCA (<,2) = (=, 2′)
?DC; (=, 2′) = (<,2′) (PUTRL)

?DC; (=, 2) = (<,2′)
?DCA (<,2′) = (=, 2′) (PUTLR)

The<8BB8=6 element in complements � represents missing information to be recovered for synchronization.
For example, when synchronizing from HCSP to UML, we expect to update the modifications and retain the rest,
including the missing information, in the UML model. The primitive unidirectional transformation (" → # ) can
maintain the shared information but cannot recover the missing information, such as arrow colors in UML. In

ACM Trans. Softw. Eng. Methodol.
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contrast, the forward transformation ?DCA can recover the missing information (i.e., arrow colors in UML) from
the complement � stored by the backward transformation ?DC; , thus providing reasonable synchronization. The
round-tripping laws formulate this synchronization rationale for forward and backward transformations.

2.3 K Framework
TheK framework10 is a language-agnostic framework for defining complex formal semantics and generating tools
from them, such as printers, parsers, interpreters, and symbolic executors. This leads to various practical applica-
tions in programming languages, like C [Ellison and Grigore Roşu 2011; Hathhorn et al. 2015], Java [Bogdanas
and Roşu 2015], and JavaScript [Park et al. 2015]. Its expressiveness, demonstrated by these applications, and its
trustworthiness, established by [Chen et al. 2021a], motivate us to provide a formal bidirectional transformation
approach in K.

1 syntax HCSPStat ::= Id " :=" Expr | " log" " ( " String " ) "
2 syntax UMLStat ::= Id "−[" Color "]>" Id " : " String
3 configuration <m> $PGM:HCSP </m> <n> .K </n> <s> .K </s>
4 rule <m> log( A ) ; L := R ; HCSPs :HCSPStats => HCSPs </m>
5 <n> UMLs :UML => UMLs P −[#black]> P : A </n>
6 <s> P </s>

Fig. 5. A K snippet of HCSP to UML transformation for “log( A ); L := R ;” to “ P -[#black]-> P : A ”.

Fig. 5 provides a code snippet inK to transform HCSP to PlantUML. Part of the syntax for HCSP and PlantUML
is defined using the “syntax” keyword and BNF grammar in lines 1-2. Specifically, line 1 specifies “HCSPStat”
for HCSP assignment and logging statements, while line 2 specifies “UMLStat” for a a colored arrow statement in
PlantUML.

The “configuration” keyword in line 3 sets up the state’s structure, initializing three cells: <m>, <n>, and
<s>. The <m> cell is loaded with an environment variable “$PGM” (the HCSP program), the <n> cell stores the
generated PlantUML, and the <s> cell stores the current process identifier. When using K’s generated interpreter,
the initial state should have the HCSP program in the <m> cell, with the <n> and <s> cells initially empty.

The “rule” keyword formalizes a rewriting rule in lines 4-6 for the HCSP to UML transformation. Because
HCSP’s concurrency semantics is quite complex, this example only considers one process within the HCSP
program. Therefore, after other rules have processed the hcsp-process, we can obtain a concrete state that matches
the left-hand side of the rule in lines 4-6, i.e., the abstract state on the left-hand side of the symbol “=>”. Note that
“<s> P </s>” in line 6 is a syntactic sugar for the “<s> P => P </s>”.

For example, lines 3-4 in Fig. 3, “log ( "Light is green") ; status :=1”, can match the pattern on the left-hand
side in line 4, because A , L , R , HCSPs are variables. Thus, “ status :=1” matches with L := R . The symbol
“=>” then performs the rewriting into the right-hand side in lines 4-6, resulting in a new state with the remaining
HCSP statements (i.e., (hcsp-process ;)*) in the <m> cell, the generated UML with the new arrow in the <n> cell,
and the unchanged <s> cell.

From this example, we observe that K offers a concise and intuitive method for defining transformations
between different languages. Consequently, it serves as the input for KBX.The trustworthiness ofK is is grounded
in matching logic, which will be discussed in the following subsection.

10https://github.com/runtimeverification/k, accessed on July 1, 2024

ACM Trans. Softw. Eng. Methodol.

 

https://github.com/runtimeverification/k


8 • Zhao et al.

2.4 Matching Logic
Matching logic [Chen et al. 2021a,b; Chen and Rosu 2019] is the logical foundation of the K language framework,
allowing for the specification and reasoning of programs. We use matching logic to capture the model and
algorithm of KBX in Section 4 to ensure trustworthiness.

Matching logic formulas, called patterns, serve as unified structures for syntax and semantic specifications in
K. They are inductively defined based on the matching logic signature � = (�+ , (+ , Σ), where �+ represents the
set of element variables (denoted x, y, …), (+ denotes the set of set variables (denoted X, Y, …), and Σ refers to the
set of constant symbols (denoted f , f1, …).

Definition 2 (Matching logic syntax). The set PATTERN(�) of �-patterns is inductively defined as follows:

i ::= G | - | f | i1i2 | ⊥ |i1 → i2 | ∃G .i | `- .i
where i has no negative occurrences of X in `- .i .

Def.2 indicates that patterns are constructed with variables (G , - ), constant symbols (f), applications to apply
the first argument to the second (i1i2), standard first-order logic (FOL) constructs (⊥,→, ∃), and the least fixpoint
construct (`). Other basic notations are defined as follows:

¬i ≡ i →⊥ > ≡ ¬ ⊥ i1 ∨ i2 ≡ ¬i1 → i2

∀G .i ≡ ¬∃G .¬i a- .i ≡ ¬`- .¬i [¬-/- ] i1 ∧ i2 ≡ ¬ (¬i1 ∨ ¬i2)
Matching logic employs a pattern matching semantics [Chen et al. 2021b], interpreting a pattern i as a set of

elements that match it. For example, ⊥ corresponds to ∅, and i1 ∧ i2 is matched by elements that match both i1
and i2. Similarly, “ L := R ” is matched by statements like “ status := 1”. When a match is found, we can apply
a capture-free substitution ofk (the matching element, e.g., “status” or “1”) for G or - (the matched pattern, L
and R ) in i . This substitution, denoted as i [k/G] or i [k/- ], is defined in the usual way as follows:

G [k/G] ≡ k ~ [k/G] ≡ ~ if ~ ≠ G

f [k/G] ≡ f (i1 → i2) [k/G] ≡ i [k/G] → i2 [k/G]
⊥[k/G] ≡ ⊥ (i1i2) [k/G] ≡ (i1 [k/G])(i2 [k/G])
(∃G .i) [k/G] ≡ ∃G .i (∃G .i) [k/~] ≡ ∃I.i [I/G] [k/~] for fresh I

(`- .i) [k/G] ≡ `/ .i [//- ] [k/G] for fresh /
The matching logic proof system [Chen et al. 2021a] defines a provability relation, written Γ ` i , indicating

that i can be proved using the system, with patterns in a matching logic theory Γ as additional axioms. This
system includes FOL rules, frame rules for application context reasoning, fixpoint rules for reasoning as in modal
`-calculus[Kozen 1983], and technical proof rules for completeness results [Chen and Roşu 2019].

EachK definition of a language ! corresponds to amatching logic theory Γ! ⊆ PATTERN(�). This theory includes
logical symbols representing the syntax of ! and logical axioms specifying formal semantics. Transformation
definitions, like Fig. 5, are matching logic theories and can be viewed as a special semantics of HCSP. K generates
tools formally specified by matching logic formulas. The basic matching logic theories required by Γ! include:
equality as a basis, sorts for “syntax” and “configuration”, and rewriting for “rule” and verification of program
execution.
Equality refers to a (predicate) pattern i1 = i2 that holds (i.e., equals to >) iff i1 equals to i2, and fails (i.e.,

equals to ⊥) otherwise. To define equality, definedness represents a symbol d_e ∈ Σ with the axiom d_eG , asserting
that any element G is 34 5 8=43 . Inductively, the predicate pattern d_ei states that i is defined (or i is not ⊥), i.e.,
i is matched by at least one element. Various critical mathematical constructs are defined based on definedness,
including totality bic ≡ ¬d¬ie, equality i1 = i2 ≡ bi1 ↔ i2c, membership G ∈ i ≡ dG ∧ ie, and inclusion
i1 ⊆ i2 ≡ bi1 → i2c.

ACM Trans. Softw. Eng. Methodol.
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Sort B is specified by the inhabitant pattern JBK (abbreviated for the application J_KB) with a symbol J_K ∈ Σ to
capture sortedK. For example, in Fig. 5, line 1 defines the sort “HCSPStat” with the inhabitant pattern J��(%(C0CK
to denote the set of all possible HCSP statements. Similarly, the “configuration” keyword defines a sort for the
computation state.

Rewriting employs a one-path next symbol • ∈ Σ to capture the transition system (or formal semantics) over
computation states defined by rewrite rules in K. This symbol denotes that for any state W , •W is matched by all
state that can go to W in one step. In other words, W is reached on one-path in the next state. Using the symbol •,
we can define the rewriting as follows:

Definition 3. Rewriting (i.e., program execution) is the reflexive and transitive closure of one-path next, which
can be defined as follows:

�i ≡ `- .i ∨ •- // Eventually; i ∨ •i ∨ • • i ∨ . . .
i1 ⇒ i2 ≡ i1 → �i2 // Rewriting

Rewriting can also be referred to as program execution in K because it describes the execution trace of a
program from the initial state i8=8C to the final state i 5 8=0; . Within this trace, patterns i8=8C , . . . , i 5 8=0; serve as
execution snapshots. For each step from i8 to i8+1 (e.g., transforming HCSP in Fig.3 to PlantUML in Fig.1), the
formal semantics Γ! provides a rewriting axiom through a rewrite rule i;ℎB ⇒ iAℎB (e.g., lines 4-6 in Fig. 5) and
the corresponding substitution (e.g., [status/ L ] and [1/ R ] for “ L := R ”).

For trustworthiness, [Chen et al. 2021a] define the correctness of the execution from i8=8C to i 5 8=0; , witnessed
by a formal proof: Γ! ` i8=8C ⇒ i 5 8=0; . This ensures that the final state is reached from the initial state according
to matching logic theory. They also propose a method to generate such proofs for given execution traces, which
can be verified by a trustworthy proof checker. Specifically, they selected Metamath, a third-party proof checking
tool, known for its simplicity, speed, and reliability, to formalize matching logic and encode its proofs. Metamath’s
proof checkers, typically only a few hundred lines of code, can verify thousands of theorems per second, making
it an ideal tool for verifying execution trace correctness. This method, therefore, ensures execution correctness
through proof generation.

In the context of transformation, the transformed PlantUML (i.e., i 5 8=0; ) is consistent with the HCSP program
(i.e.,i8=8C ) according to the formal consistency definition (Γ!).Thus, we employK generated interpreters to provide
verified synchronization, ensuring that the synchronized models are consistent under the formal consistency
definition. Additionally, the generated proof can serve as evidence for evaluating traceability (i.e., consistency
between different models) required by standards like ISO-1540812 and IEC-61580.

3 RESEARCH OVERVIEW
In this section, we first clarify the motivation of our work via an industrial example from high-speed maglev train
verification. We then present an overview of KBX and state the challenges of verified model synchronization.

3.1 Motivating Example
This work is motivated by an industrial practice of verifying high-speed maglev trains, which are heterogeneous
safety-critical systems with frequent and complex communications. To ensure the intuitive yet rigorous design of
such systems, we collaborate with our industrial partners and utilize two distinct models: (1) an abstract model in
UML that is rough but intuitive for team communication; and (2) a refined model in HCSP, a formal language for
hybrid system simulation and verification.

For instance, in Fig 6, the UML model visualizes how pedestrian-controlled traffic lights work. In this model,
arrows pointing to oneself represent actions, like “'D= 10 <4C4AB”, while arrows pointing to others signify
interactions initiated by an entity, as seen in “BC0CDB := 0”. The “>?C” block indicates that the first message can
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Light

Light

Pedestrian

Pedestrian

"Light is green"

"Run 10 meters"

op t

status := 0

"Red for 20 seconds"

"Light is green"

HCSP UML diagram

Light ::=1

    log("Light is green");
    status := 1 ;

3
4

    (button ? status --> 5

        log("Red for 20 seconds");
        <t' = 1 & t < 20>; 

6
7

        log("Light is green"); 
        status := 1;);

8
9

HCSP

Pedestrian ::=

    log("Run 10 meters");
    <s' = 1 & s < 10>;

    button ! 0; 14

rule1

rule2

    t := 0 ;     s := 0 ;2

12
13

10

11

rule1

rule3

rule3

rule4

Fig. 6. Pedestrian Interaction with Traffic Signals: A depiction of a pedestrian crossing the road with a traffic light initially
displaying red, followed by a 10-meter walk, button activation, a 20-second green signal, and subsequent return to red.

trigger operations in it. In contrast, the HCSP model refines the UML model by applying specific rules (e.g.,
“AD;41” converts the message content of UML “!86ℎC 8B 6A44=” to the log of HCSP, and introduces an expression
to refine this behavior “BC0CDB := 1”). This refined model introduces elements like assignments, e.g., “BC0CDB := 1”,
channels, e.g., “1DCC>= ? BC0CDB”, and ordinary differential equations, e.g., “< B′ = 1 & B < 10 >”. By exiling details
from abstract models to refined models, the combined use of HCSP and UML improves both clarity and precision
in the design process.

However, using multiple models suffers from trustworthiness issues. As an example, the HCSP model may
not synchronize with the UML model according to rule4. After the pedestrian presses the button, the light
should switch to red, ensuring the pedestrian crosses the road. However, due to the lack of “1DCC>= ! 0”, the
light erroneously remains green, posing a substantial risk of traffic accidents. As intricate and safety-critical
systems, Maglev trains could lead to even graver consequences if consistency is compromised. Hence, it becomes
imperative to synchronize these models and rigorously verify their consistency.

Model Synchronization. Our first task is to maintain consistency by synchronizing the models after any
modification. This involves shared information updates and missing information recovery. For instance, if we
adjust the pedestrian distance traveled in HCSP from 10 to 5 (lines 12-13 of Fig 6), we need to update the message
content (shared information) to “'D= 5<4C4AB” and recover the message color (missing information) to be blue
according to “AD;45” in UML. Manually updating all the modifications in shared information is laborious, while
developing separate unidirectional transformers with mutually consistent behavior for synchronization can be
difficult and error-prone. Using BX frameworks enables the efficient development of bidirectional transformers
that satisfy synchronization rationale (e.g., round-tripping laws) for accurate update and recovery.

Consistency Verification. Our second task is to prove the semantic consistency between synchronized models.
This is typically achieved through refinement verification, which ensures that the state sets of synchronized
models adhere to a predefined state relation before and after symbolic simulation, based on the models’ formal
semantics. This process is often carried out using interactive theorem provers and requires numerous manually
constructed proofs to ensure trustworthiness. Additionally, any modifications to the models necessitate repeating
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the verification process, resulting in substantial verification efforts. For example, proving semantic consistency
between HCSP and UML through refinement verification involves the following steps:

(1) Construct formal semantics for HCSP and UML within a formal framework.
(2) Develop translators to convert HCSP and UML models into formal representations.
(3) Define formal specifications for the consistency between HCSP and UML, i.e., the relation between state

models of HCSP and UML semantics.
(4) Construct proofs to verify that the synchronized models adhere to the formal specifications:

• Simulate the HCSP program from any initial state (ℎ2B? to its final state ( ′
ℎ2B?

via the formal semanitcs
of HCSP.
• Simulate the UML model from any initial state (D<; to its final state ( ′

D<;
via the formal semantics of

UML.
• Prove that the initial states (ℎ2B? and (D<; , as well as the final states ( ′

ℎ2B?
and ( ′

D<;
, conform to the

predefined state relation.
(5) Manually reconstruct proofs after each model modification.

In summary, employing multiple modeling languages allows us to take the unique strengths of each lan-
guage, but it also introduces complexities that can hamper the development and verification process, leading to
inefficiencies and the risk of errors.

3.2 KBX Overview
To simplify the development and verification of multiple models, our vision is to design a formal bidirectional
transformation (BX) framework. First, by automating the synchronization process, BX eliminates the laborious
manual language conversions, such as those between PlantUML and HCSP. Second, formal BX takes a step further
by addressing the need for consistency verification. This is accomplished by employing formal specifications to
establish rigorous consistency and utilizing a proof system to verify this consistency. As a result, the framework
can (1) automatically synchronize HCSP and UML models, and (2) formally prove the consistency.

However, the existing BX frameworks face limitations in both synchronization and verification.
• First, existing BX frameworks fall short in expressiveness and trustworthiness for synchronization. Specif-

ically, they lack a focus on being language-oriented and formal. To illustrate the issue of expressiveness,
consider the synchronization of HCSP and UML models. Using current BX frameworks, users not only
have to implement BX programs but are also required to develop parsers and printers for both HCSP and
UML. These parsers enable the BX program to manipulate the models, while the printers produce HCSP
and UML representations instead of abstract syntax trees (AST). A more expressive BX framework should
eliminate the need for users to develop parsers and printers. Additionally, in terms of trustworthiness,
these frameworks often rely on programming languages (e.g., C# [Hinkel and Burger 2019]) , diagram
languages (e.g., EVL+Strace [Samimi-Dehkordi et al. 2018]), or Meta-Object Facility-based languages (e.g,
Vitruvius [Klare et al. 2021]) to describe model relations, rather than formal languages like K, Coq, and
HOL. This can result in undefined behavior of the generated synchronizer.
• Second, current BX frameworks lack formal languages and proof systems, making consistency verification

difficult and unreliable. Without formal languages, setting verification goals is impossible, and without
proof systems, proving these goals is unfeasible. As Stevens [2008] noted, “most work on verification or
validation of model transformations is not about ensuring the transformation conforms to its specification
and user requirements, but about ensuring the transformation is sane.” This remains the case today.
Approaches discussed by [Hidaka et al. 2016; Hildebrandt et al. 2013] only address algorithm correctness.
Even Ko et al. [2016] used an interactive theorem prover to verify synthesis algorithm correctness, unlike
earlier studies such as Hermann et al. [2011] which provided manual proofs.This lack of formal verification
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Fig. 7. The Architecture of KBX Formal BX Framework.

for synchronization processes results in unpredictable outcomes for BX programs, as shown by [Anjorin
et al. 2020].
Given the complexity and errors already identified in BX programs, relying on them as a trust base is
unreliable. Additionally, the complexity of these programs and their implementation languages makes
formal verification practically impossible. Thus, laborious consistency verification appears inevitable, as
discussed in Section 3.1. However, even if such efforts are tolerated, the newly introduced translators
from the informal to the formal world increase the trust base, which cannot be verified. This conflicts
with the requirements for safety-critical system development, which aims to minimize the trust base.

Approach. This paper introduces KBX, a novel formal BX framework for simultaneous synchronization and
consistency verification, as shown in Fig 7. In KBX, developers use unidirectional transformation definitions to
generate formal synchronizers, automating model synchronization and consistency verification for consumers.
This integration of formal consistency verification not only ensures trustworthiness but also aligns it with
high evaluation assurance levels of international safety and security standards, e.g., IEC-61580 [Bell 2006], DO-
178C [Jacklin 2012], and ISO-1540811, making it particularly suitable for safety-critical systems. To elucidate
KBX’s trustworthiness and expressiveness, the following delves into KBX workflow in Fig. 7.

Expressiveness. KBX simplifies the development of formal synchronizers by using a unidirectional transforma-
tion definition inK to establish formal consistency between synchronization targets. For instance, developers only
need to provide rewrite rules to transform HCSP to PlantUML, defining the formal axioms of their consistency. As
illustrated in Fig. 3, the consistency between “log( A ); L := R ;” and “ P -[#black]-> P : A ” is formally defined
for AD;41 in Fig. 6.

KBX uses these formal consistency definitions to automatically generate formal forward and backward
transformation definitions, preserving the specified consistency. During the formal synthesis stage (Section
4.2), KBX enriches each rule with additional manipulations to produce a forward transformation definition that
replicates the original transformation while capturing and recovering any missing information. Conversely, the
backward synthesis process (Section 4.3) produces a backward transformation definition in harmony with the

11https://www.commoncriteriaportal.org/cc/index.cfm, accessed on July 1, 2024
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forward transformation, ensuring compliance with round-tripping laws. This compliance is achieved through the
backward rewrite that we proposed in matching logic.

After generating the backward transformation definition, developers should specify default values within it.
Although KBX provides a symmetric lens, the original consistency definition only supplies default values missing
in the forward transformation. For example, the default arrow color in PlantUML is “#black”, and default values
for HCSP assignments, such as L and R , are not specified. For these values, KBX generates placeholders like
“?KbxGenTodo0” for L and “?KbxGenTodo1” for R in the backward transformation definition.

Once the default values are filled in, KBX leverages the K framework to automatically generate verifiable
and certifiable transformers from these definitions, forming a formal synchronizer for synchronization and
consistency verification. Note that, the generated backward transformation definition is valid with generated
placeholders and can be used to create symbolic synchronized models, such as HCSP programs with symbolic
values. For better efficiency, it is preferable to replace these placeholders with actual default values to obtain a
concrete synchronized model using the K-generated concrete interpreter.

Consequently, KBX’s expressiveness for developers is manifested in three key aspects: conciseness, intuitiveness,
and capability. KBX’s synthesis processes eliminate the need for developers to manage the complexities of
synchronization rationale and reverse transformation definitions, enhancing conciseness. Its intuitive nature,
as shown in lines 4-5 of Fig. 5, enables developers to use target syntaxes like HCSP and UML for formalizing
consistency, avoiding the challenges of handling dual ASTs and reducing the trust base. Finally, KBX’s capability
is grounded in the established efficacy of the K framework, which has been successfully applied in the formal
semantics of languages including C, Java, and JavaScript.

Trustworthiness. Beyond its expressiveness, KBX establishes trust by proving the consistency between syn-
chronized models through the K framework’s proof generation capability. The generated proof is verified by
a proof checker to ensure that the execution by the K-generated interpreter conforms to its formal semantics.
In synchronization, this verification ensures that each synchronization process adheres to predefined formal
consistency definitions. Consequently, synchronized model pairs are validated to be consistent under these formal
definitions.

Conversely, if the proof does not pass the proof checker’s examination, the synchronized model pairs are
deemed inconsistent. There are several reasons for this: (1) If the input syntax is incorrect, the verification will
fail because the incorrect syntax is not defined in the consistency definition. For instance, only the correct syntax
of HCSP and PlantUML is defined as a valid matching logic pattern in the consistency definition. Therefore, in
forward transformation, only syntactically correct HCSP can be synchronized into syntactically correct PlantUML.
(2) If the semantics (both static and dynamic) are incorrect, there will be no rewrite rule as matching logic axioms
to transition the input model to the output model. For example, if an HCSP program contains only a send
message, the transformation process will deadlock, preventing further transformation and thus failing to produce
a synchronized PlantUML model. (3) Even if an erroneous model is synchronized, it will be detected because the
proof checker cannot validate the proof.

Our approach reduces the synchronization trust base from complex BX programs to intuitive, easily-reviewable
formal consistency definitions and proof checkers. This method relies on a formal framework for consistency
verification that is comparable to semantics-based refinement verification. With reliable formal semantics, these
definitions can be verified, further reducing the trust base. When targets lack unambiguous semantics, the
formal definitions serve as the minimal trust base. Notably, our verification method does not depend on the
correctness of SMT solvers. Instead, we use the meticulously selected Metamath proof checker, known for its
simplicity and reliability, typically comprising only a few hundred lines of code and having multiple open-
source implementations. This enhances the trustworthiness of our consistency verification, providing rigorous
certification and simplifying the evaluation process, which is crucial for safety-critical systems.
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Summary. KBX offers an expressive framework for developers to construct formal synchronizers, coupled
with a trustworthy method for consumers to verify model consistency. The following subsection will present a
problem formulation for achieving simultaneous synchronization and consistency verification. It will outline the
technical challenges encountered and provide a roadmap for addressing these.

3.3 Problem Statement
In this study, we tackle the FSS (Formal Synchronizer Synthesis) problem, focusing on the consistency verification
and synchronization between model sets" and # , exemplified by programs in HCSP and models in PlantUML.
A key element to this problem is the complements � , indicative of information gaps inherent between" and #
— crucial for differentiating BX from normal transformation.

FSS Problem Statement
Given a forward transformer DG : " → # compliant with formal definition ΓDG , we aim to synthesize a
formal synchronizer ℓ ∈ " ↔ # that comprises a forward transformer ?DCA : " ×� → # ×� , a backward
transformer ?DC; : # ×� → " ×� , and a strategy for managing complements � . The transformers ?DCA and
?DC; should satisfy these conditions: (1) Compliance with their respective formal definitions Γ?DCA and Γ?DC; ,
verified by a proof checker. (2) The output model = ∈ # from ?DCA mirrors that of DG for identical input models,
given an empty input complement. (3) Adherence to the round-tripping laws for reasonable synchronization.

Following the problem statement, we distill the key to our work: (1) the formalization and verifiability of each
definition for BX, and (2) the automatic provability of every executable tool derived from these definitions. We
achieve this by synthesizing formal definitions within theK framework, harnessing its capabilities for generating
interpreters, verification tools and proofs. The input is a language-agnostic K definition, covering syntax for both
source and target transformations, state declarations, and transformation rules. This allows us to utilize existing
K semantics (e.g., Java, C, AADL) to validate related BX correctness and reuse portions of syntax and semantic
rules, including static semantics, for BX construction. However, synthesizing formal BX definitions (i.e. forward
and backward transformation definitions Γ?DCA and Γ?DC; ) and crafting a formal BX framework is far from trivial.

Roadmap. Our work addresses the following key challenges in tackling the FSS problem:
Matching Logic-based BX Model (Section 4.1). The K framework, initially tailored for programming language

semantics and verification, lacks direct support for BX formalization. Thus, our first step is to model the FSS
problem using matching logic to apply K’s advanced formal methods, thereby satisfying the first FSS condition.
We strive to formalize a versatile model capable of handling multifaceted and multilingual BX scenarios beyond
just HCSP and PlantUML, ensuring that our approach retains the expressive power of K without imposing undue
restrictions.

Forward Transformation Synthesis (Section 4.2). Building on our basis model, we seek to synthesize the forward
transformer ?DCA addressing missing information recovery (e.g., recapturing the omitted PlantUML message color
in HCSP). Altering the existing transformer DG directly would contravene its formal definition ΓDG , thus affecting
its verifiability. We propose deriving a human-readable K forward definition Γ?DCA from ΓDG . This endeavor
introduces two primary challenges: (1) Developing a method for manipulating complements � within Γ?DCA that
aids in information recovery while preserving K’s language-agnostic nature to facilitate verified synchronization
across various models. (2) Ensuring that the inclusion of complements manipulation in ?DCA maintains its output
equivalence to DG under identical inputs, satisfying the second FSS condition.

Backward Transformation Synthesis (Section 4.3). Essential to our formal synchronizer, the backward transformer
?DC; confronts challenges in handling language-agnostic models and satisfying the round-tripping laws. We
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respond to these challenges by introducing the “backward rewrite” within matching logic, harnessing matching
logic’s capacity to transcend language specifics. This approach is crucial for synthesizing Γ?DC; and ensuring ?DC;
satisfies the round-tripping laws.

Formal Synchronizer (Section 4.4). Although the formal transformers ?DCA and ?DC; are effectively derived from
Γ?DCA and Γ?DC; , the complexity of theK framework and its toolchains presents challenges in practical application.
To counter this, we introduce a formal synchronizer strategy that facilitates both synchronization and consistency
verification processes. This synchronizer not only streamlines the use of ?DCA and ?DC; as a symmetric lens but
also generates consistency proofs for synchronized models (e.g., verifying if HCSP and UML models in Fig. 6
represent the same system). These proofs, verifiable by a proof checker, offer tangible evidence of consistency,
elevating the assurance level of the evaluation for safety-critical systems.

Remark. Introducing BX to a formal framework presents several advantages:
Trustworthy Synchronization with a Small Trust Base. (1) Intrinsic Verifiability. Definitions related to synchro-

nization are readable, amenable and verifiable to customization and review. This diminishes the necessity for
developing and trusting translations to other languages with a proof system. (2)Direct Correctness Verification. This
allows developers to define and verify critical transformation properties directly. Where operational semantics
of synchronization targets are trustworthy, they can serve as an ideal basis for demonstrating synchronization
correctness. (3) Trustworthy Execution. The reliability of the synchronization process is ensured by generating
proofs that are subsequently validated using a trusted proof checker.
Automatic Verification Comparable to Refinement Verification. As discussed in Section 4.4, we elucidate how

consistency verification through KBX aligns with, and is comparable to, refinement verification. This section also
outlines methodologies for proving their compliance.

4 APPROACH
This section begins by formalizing the FSS problem using matching logic (Section 4.1), laying the logical basis
for the paper. We then introduce our solution, including three steps: the synthesis of forward (Section 4.2) and
backward (Section 4.3) transformations, and their use in simultaneous consistency verification and synchronization
(Section 4.4). Additionally, Section 4.4 explores the meaning of consistency verification results in KBX.

4.1 Matching Logic-based Bidirectional Transformation Model
This section presents the KBXmodel, the logical foundation of the KBX framework, to formulate the FSS problem in
theK framework.This model includes two matching logic theories Γ?DCA and Γ?DC; by reforming the unidirectional
one ΓDG . Our synthesis uses this model to generate the formal BX definitions from the unidirectional ones in K.

KBX Input: Unidirectional Transformation Definition ΓDG . To provide an expressive and intuitive way to
construct BX, the KBX model introduces a unidirectional definition ΓDG to capture the consistency definition
withinK. This definition defines the transformations DG : " → # via matching logic rewriting< f= fB ⇒ f< = B .
These transformations begin with an input model<, an empty output model f= , and an initial transformation
state fB . By substituting the rewrite rules in ΓDG , these transformations result in an empty input model f< , an
output model =, and a final transformation state B . The following definition describes ΓDG ’s function and enables
users to define consistency using K rewrite rules without limitations.

Definition 4. Given the sorts" , # , ( and constants f< :",f= :#, fB :( , unidirectional transformation definition
ΓDG results in the following rewriting:

< :",= :#, B :(. ΓDG `< f= fB ⇒ f< = B

In this context, the symbols " , # , and ( denote the syntax sorts for the input model, output model, and
transformation helper, respectively. These sorts, such as the syntax of HCSP and plantUML, are defined within
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the ΓDG definition. Additionally, the definition includes a set of rewriting rules that facilitate the transformation
process through the rewriting theory. The definition configuration declares the initial state and the structure of
the states in the rewriting rules.

This formalization strikes a balance between specificity and generality. It is detailed enough to define a
transformation, yet flexible enough to accommodate diverse languages and semantics. This is achieved without
imposing limitations on the sorts ", # (which define the syntax of transformation targets) and the rewrite rules
in ΓDG (which determine the semantics of consistency). For instance, in Fig. 5, the syntax like “HCSPStat” is
captured by ", # . The “configuration” (line 3) specifies the initial transformation state as < f= fB , and the
“rule” (lines 4-6) illustrates one of the ΓDG rules that govern the transformation process. Developers can adapt
this model to other transformations using “syntax” to define", #, ( , “configuration” to set the transformation
state, and “rule” to delineate transformation semantics.

KBX Output: Bidirectional Transformation Definitions Γ?DCA and Γ?DC; . We present Def. 5 and Def. 6 to
describe the bidirectional transformation definitions in matching logic.

First, we clarify the concept of forward definition Γ?DCA by establishing its relation with ΓDG . The following
definition guarantees that when applying the transformations defined by ΓDG and Γ?DCA to an input model<,
it will result in an identical transformed model =. Consequently, the forward definition Γ?DCA shares the same
consistency definition as the unidirectional definition ΓDG .

Definition 5. Given the sorts" , # , ( , � and constants f< :",f= :#, fB :( , the forward definition Γ?DCA mirrors
the behavior of the unidirectional definition ΓDG : ∀< :",= :#, B :(.∃2 :�, 2′ :�.

ΓDG ` < f= fB ⇒ f< = B

Γ?DCA ` < f= 2 fB ⇒ f< = 2′ B

Second, we obtain the correct bidirectional definitions by refactoring the round-tripping laws from Definition 1
with matching logic results in Definition 6. The definition Γ?DCA achieves the same directional transformation as
ΓDG , while Γ?DC; accomplishes the reverse transformation. Unlike the unidirectional definition ΓDG , the bidirectional
definitions Γ?DCA and Γ?DC; incorporate the sort � and its corresponding configuration to retain information that
might be lost during the transformation. Furthermore, according to PuxRL, it is ensured that Γ?DCA accurately
preserves information, and Γ?DC; effectively restores information. Similarly, PuxLR guarantees that Γ?DC; correctly
preserves information, and Γ?DCA aptly recovers information.

Definition 6. Given the sorts " , # , ( , � and constants f< : ",f= : #, fB : ( , bidirectional transformation
definitions Γ?DCA , Γ?DC; satisfy the following laws: ∀< :",= :#, 2 :�, 2′ :�, B :(.

Γ?DCA ` < f= 2 fB ⇒ f< = 2′ B
Γ?DC; ` f< = 2′ B ⇒< f= 2

′ fB
(PuxRL)

Γ?DC; ` f< = 2 fB ⇒< f= 2
′ B

Γ?DCA ` < f= 2
′ B ⇒ f< = 2′ fB

(PuxLR)

In conclusion, we introduce the input definition ΓDG and the output definitions Γ?DCA , Γ?DC; for KBX, aligning
it with the scope of matching logic. Given that each matching logic definition corresponds to a K definition,
developers can utilize the K framework to conveniently define consistency and implement the unidirectional
transformation. This involves using the syntax keyword to define sorts" , # , and ( through EBNF-like grammar;
the configuration keyword to identify constants f< , f= , and fB using XML-like grammar; the rule keyword
to establish rewrite/semantic rules within ΓDG . By providing these K definitions, the K system automatically
generates transformation and verification tools for automatic verification and synchronization.

Nevertheless, composing bidirectional transformation definitions Γ?DCA , Γ?DC; poses challenges. Firstly, design-
ing and implementing complements is time-consuming and error-prone. Secondly, managing numerous rewriting
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rules presents difficulties in ensuring accurate information storage and recovery. These factors contribute to a
substantial workload and reduced reliability. Hence, we propose the subsequent synthesis to address these issues.

4.2 Forward Transformation Synthesis
This section delves into the design of a complement structure and the synthesis workflow for the forward
transformation, denoted as ?DCA , within the KBX framework.

Structure of the Complements Holder. Complements � refers to the missing information to be recovered
during the forward (?DCA ) and backward (?DC; ) transformation. In KBX, we manipulate this missing information
in both directions of a BX by using a map that links common information to distinct information on either side
of a rewrite rule, represented as 2><<>= ↦→<8BB8=6. To illustrate this in the language-agnostic framework K,
consider the case of unidirectional transformation definition ΓDG . This definition, as exemplified by lines 4-6
in Fig. 5, employs a set of rewrite rules to define transformation semantics. For each rule within K definitions,
various transformation-related information types are identifiable: (1) Variables/Tokens (e.g., A , L , “#black”), (2)
Syntax productions like “log (_)” and “_:=_” and , (3) State productions, which are syntactic sugars for generating
“Cell” patterns (e.g. “<m> _ </m>”), (4) Side conditions that establish preconditions and postconditions, and (5)
Rule attributes (e.g. “ priority (_)”, which determine the rule adoption order).

Discerning Missing Information. We identify the<8BB8=6 information by examining the asymmetry around the
rewrite symbol “=>” within the K definition Γ. This process involves dissecting Γ into individual assessments
of each rewrite rule. Such segmentation is reasonable because the transformation process comprises distinct
snapshots, each corresponding to the application of a rewrite rule (as detailed in Section 2.4). Consequently, any
information not present post-application of a rule is deemed<8BB8=6 after the transformation. Our analysis across
different information types leads to the following conclusions12:
• Variables/Tokens are identified as<8BB8=6 if they are not present on both sides of the rewrite symbol “=>”.

For instance, L and R in the DG transformation targets are considered<8BB8=6 as their values cannot be
deduced from the right side of the rewrite rule.
• Syntax productions are considered <8BB8=6 when there is an overlap in matched pattern sets on the

right of two rewrite rules. This overlap impedes distinguishing syntax productions on the left side from
the other. We presuppose such overlaps do not occur on the left side of ΓDG ’s rewrite rules to maintain
deterministic transformation over symbolic results.
• Other information types like state productions, rule attributes, and side conditions are not categorized as
<8BB8=6. State productions and rule attributes remain constant through the rewriting process, and while
side conditions influence rule application, they do not modify the state. Thus, they do not contribute to
the<8BB8=6 information during the transformation.

Designing Complements Holder. Identifying<8BB8=6 information is a critical initial step, but it is insufficient
for forming a practical structure for information recovery. To address this, we use a “Map” in the K framework,
structured as 2><<>= ↦→<8BB8=6, ideal for data manipulation.

The 2><<>= element represents shared information across both sides of the rewrite rules, facilitating consistent
handling of the corresponding <8BB8=6 information. However, defining what constitutes 2><<>= is crucial.
Overburdening the “Map” with excessive data leads to impractical key sizes. Therefore, we selectively identify
2><<>= elements:

• Variables/Tokens. Included in 2><<>= when appearing on both sides across different states, exemplified
by A and P in Fig. 5. Conversely, variables/tokens common within the same state are excluded. For
instance, HCSPs and UMLs , which merely serve as the context of rewrite rules, are excluded. Including

12Note that this analysis takes into account both directions of synchronization
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such context-specific variables in 2><<>= would bloat 2><<>= and reduce its functionality, especially
when slight changes in context render the complements ineffective for information recovery. For example,
in Fig. 6, if we retain HCSPs and UMLs , then when adopting rule1 to transform lines 3-4 of HCSP into
the corresponding PlantUML, all code after line 4 in HCSP and the already transformed PlantUML would
need to be stored as 2><<>= in the complements holder. This not only increases size but also means that
“status” and “1” can only be recovered if the modifications in PlantUML do not affect the code after line 4
in HCSP. This is unreasonable because we believe the semantics of a syntactic unit should be independent
of its syntactic context and only related to itself and its semantic context like its current thread. Based on
this insight, HCSPs and UMLs should not be regarded as 2><<>= because they do not contribute to
state transitions and are not effectful semantic contexts.
• Syntax Productions. Ideally, 2><<>= could consist of left-hand syntax productions minus the<8BB8=6. Yet,

this approach is computationally intensive. To simplify, each rule in 2><<>= is assigned a unique ID. This
facilitates the deterministic application of backward rewrite rules, ensuring the recovery of missing syntax
productions when common variables differ. However, this approach introduces a limitation: it can result in
indistinguishable syntax productions on the left side in scenarios where missing syntax productions exist,
and common variables are identical across different rewrite rules. Despite this, it is reasonable because
identical matching logic symbols should have the same meaning, given that the semantics of matching
logic is formal and unambiguous. For example, in Fig. 5, if there is another rule with a right-hand pattern
logically equivalent to lines 4-5, and the complements contain the same A and P , then the backward
transformation generated according to Section 4.3 would result in non-deterministic application of the
rewrite rule. This essentially means that multiple HCSP symbols correspond to a single PlantUML symbol,
making it impossible to deduce which HCSP symbol should be mapped to when the PlantUML symbols
are identical. This is reasonable because lines 1 and 6 in Fig. 1 should not have two different meanings. A
simple modification to the arrow’s annotation or color can differentiate them. This semantic consistency
is ensured through lines 8-9 and 15 of Fig. 9 and lines 8-9 and 15 of Fig. 10.
• Other information types. State productions and rule attributes, similar to variables common in the same

state, are excluded in 2><<>=. Side conditions, analogous to syntax productions, are efficiently managed
using rule ID.

Consequently, the state structure is 2><<>= ↦→ <8BB8=6, where 2><<>= is a combination of a rule ID and
common variables/tokens across different states, and<8BB8=6 is different variables and tokens. This structure’s
generality lies in its reliance on information from the language-agnostic K framework rather than specific
transformation definitions. The rationale for this structure is further explored in Section 4.3, where we discuss
backward rewrite and synthesis.

Workflow of Forward Transformation Synthesis. Figure 8 depicts the detailed synthesis workflow of
KBX. We illustrate each step using Fig. 9, focusing on forward synthesis. The corresponding steps for backward
synthesis are covered in Section 4.3, and step 8 is elaborated in Section 4.4. This example showcases a segment of
the forward transformation definition Γ?DCA , derived from the unidirectional ΓDG in Fig. 5. The “configuration”
keyword (line 1) sets up State+C , and the “rule” keyword (lines 4 to 7 and 9 to 12) defines rules in CreateR and
PutR , respectively. A key difference in Fig. 9 is the complements manipulation for recovering missing information.
Step 1: (B~=C0G, BC0C4, AD;4B) ← �GCA02C (%0AB4 (ΓDG )). The first step involves parsing the unidirectional trans-

formation ΓDG into KAST (K Abstract Syntax Tree), an intermediate representation in the K framework. This
parsing, aided by K, ensures the transformation targets’ syntax, like HCSP’s “_ ::= _”, is intuitively represented.
Then, we extract critical components from the KAST: B~=C0G (syntax definition, e.g., Fig. 5 lines 1-2), BC0C4
(transformation state declaration, e.g., Fig. 5 line 3), and AD;4B (rewrite/semantic rules, e.g., Fig. 5 lines 4-6).
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Fig. 8. The Detailed Synthesis Workflow of KBX Formal BX Framework.

1 // State+C
2 configuration <m> $PGM:HCSP </m> <n> .K </n> <s> .K </s> <c> .Map </c>
3 // CreateR: Complements Manipulation with Default Value
4 rule <m> [log( A ) , L := R ] HCSPs : List => HCSPs </m>
5 <n> UMLs : List => UMLs [ P −[#black]> P : A ] </n>
6 <s> P </s>
7 <c> Cp:Map => Cp [[1, A , P ] <− [[ L , R ], [#black ]]]</ c>
8 require Cp[[1, A , P ]] orDefault . List ==K . List
9 orBool Cp[[1, A , P ]] orDefault . List ==K [[ L , R ], [#black ]]

10 [ priority (51) ]
11 // PutR: Complements Manipulation with Complements Holder
12 rule <m> [log( A ) , L := R ] HCSPs : List => HCSPs </m>
13 <n> UMLs : List => UMLs [ P −[ C ]> P : A ] </n>
14 <s> P </s>
15 <c> Cp:Map [1, A , P ] |−> [[ _ , _ ], [ C ]]
16 => Cp:Map [1, A , P ] |−> [[ L , R ], [ C ]] </c>

Fig. 9. The K definition for the forward transformation of rule 1.

Step 2: BC0C4+2 ← �33��>;34A (BC0C4). This step adds a complements holder (�33��>;34A ) to the state for the
forward transformation, differentiating it from the unidirectional state declaration. The complements holder, a
2><<>= ↦→ <8BB8=6 “Map”, stores and retrieves missing information during the transformation. As shown in
Fig. 9 line 2, �33��>;34A automatically generates the complements-holder cell with a distinct name “c” and its
initial state “ .Map”.
Step 3: 2A40C4A ← ∀i : AD;4 ∈ AD;4B. �>=B8BC (i �� (� => � (i.2><<>=) ← (i.<8BBA , i .<8BB; ))). This step

involves enhancing each rewrite rule in the unidirectional transformation ΓDG with complements manipulation.
The process, applied to all rules (AD;4B), generates new rules (2A40C4A ) that mirror the original rules but include the
storage of complements. Specifically, the �� function is employed to create a complements-holder pattern. This
pattern dictates the rewriting of the complements holder’s content (�) to capture both i.<8BBA (variables/tokens
unique to the left-hand side) and i.<8BB; (unique to the right-hand side). If no<8BB8=6 information (i.e. i.<8BBA ,
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i.<8BB; ) is detected, the original rule is retained unchanged. Additionally, the �>=B8BC function ensures no
complement conflicts in the transformation source by verifying the state of � (i.2><<>=). To achieve this, we
introduce a precondition to the rewrite rules in 2A40C4A . This precondition checks whether the set� (i.2><<>=) is
either empty or if� (i.2><<>=) is equivalent to the<8BB8=6 of the given rewrite rule, denoted as� (i.2><<>=) =
() ∨� (i.2><<>=) = (i.<8BBA , i .<8BB; ).

Fig. 9 illustrates our approach in lines 4-10, introducing complements manipulation to Fig. 5 in lines 4-6. In
line 7, a complements-holder state cell “<c>” is utilized, driven by the �� function. This cell involves a rewrite
pattern whose left-hand side is any possible complements holder � (i.e., “Cp:Map”). The right-hand side is a map
update operation (“<−”). The map updates based on the key: i.2><<>=, i.e., a list of rule ID (“1”) and common
variables/tokens ( A , P ). The updated value is a list of i.<8BBA (i.e., L and R ) and i.<8BBA (i.e., “#black”). The
�>=B8BC function generates the side condition in lines 8-9. Line 10 introduces a lower priority for rule application,
which is an implementation compromise for �% in the next step.

Note that, � (e.g., “Cp”) can be any holder without impacting the application of rule i . Thus, the generated
rewrite rules 2A40C4A defines an equivalent transformation to the original AD;4B .

Step 4: ?DCA ← ∀i ∈ AD;4B. ;4C i ′ ← ) 2+ (i) 8= �% (i ′ �� (� (i.2><<>=) = (�=~, i ′ .<8BB; ) =>
� (i.2><<>=) = (i ′ .<8BBA , i ′ .<8BB; ))). This step generates rewrite rules PutR (?DCA ), using the complements
holder for information recovery. This recovery is achieved by the holder’s left-hand side i ′ .<8BB; . This rule
also supports the modification of the synchronization source through �=~ and only uses i.2><<>= as the
identification for obtaining missing information. This synthesis step involves two new functions: ) 2+ and �% .
The ) 2+ function converts all right-hand tokens into variables to use the complements holder for information
recovery, rather than the default values. The �% function assigns these new rules a higher priority, ensuring they
are applied before 2A40C4A when matched complements exist.

Fig. 9 demonstrates the generation of ?DCA in lines 12-16. This example mirrors Fig. 5 (lines 4-6), except for
the color token “#black” is changed to the variable C using ) 2+ . The complements-holder cell “<c>” is then
generated according to the new pattern i ′ using �� . As discussed before, the �% function provides a lower
priority to the rules in 2A40C4A to ensure the precedence of ?DCA . This compromise is because the default priority
in K is 50, which is also the highest priority.

Note that, the rules in ?DCA are not applicable when complements are empty. In such cases, the behavior of the
transformation ?DCA follows that of DG as per the rules in 2A40C4A .

Step 5: Γ?DCA ← %A8=C (B~=C0G, BC0C4+2 , 2A40C4A , ?DCA ). This step involves pretty printing the modified KAST into
a readable K definition for Γ?DCA .

Step 6: ?DCA ←  ><?8;4 (Γ?DCA ). The final step is compiling the Γ?DCA definition into a verifiable and executable
forward transformer using  ><?8;4 .

In summary, the forward synthesis fulfills the following forward transformation requirements: (1) When
complements are absent, the forward transformation ?DCA mirrors the unidirectional transformation DG using
rules in CreateR (2A40C4A ). (2) With complements, ?DCA uses PutR (?DCAA ) to recover missing information. (3)
All missing information<8BB8=6 is retained in the complements holder 2><<>= ↦→<8BB8=6, identifiable through
2><<>= between rewrite rules. (4) Transformation ?DCA validates the consistency of missing information in
the transformation source using preconditions generated by �>=B8BC . In essence, irrespective of whether the
complements holder has retained the information, ?DCA maintains the same<8BB8=6.

4.3 Backward Transformation Synthesis
Based on the complements holder and manipulation strategy, this section presents the synthesis basis and
workflow for the backward transformation ?DC; .
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Theory of Backward Rewrite: To accurately synthesize backward transformation definition Γ?DC; , we
introduce the concept of backward rewrite (denoted as (_)−1 ∈ Σ) within matching logic to achieve a stringent
recovery formalized by the BACKFORTH law.

Definition 7. Given i ≡ i;ℎB ⇒ iAℎB , we define its backward rewrite rule, denoted as (i)−1 (abbreviated for
the application (_)−1i), as follows:

(i)−1 ≡ iAℎB ⇒ i;ℎB

This definition shows that the backward rewrite (_)−1 logically exchange i;ℎB and iAℎB within the rewrite rule
i . Aggregating these backward rewrite rules forms the backward semantics Γ−1, enabling the recovery of initial
states from final states for forward semantics Γ. This is specified by the BACKFORTH law, given below:

Definition 8. Given any rewrite rule i;ℎB ⇒ iAℎB ∈ Γ, we define the backward semantics as (Γ)−1 as follows:

(i;ℎB ⇒ iAℎB )−1 ∈ (Γ)−1

This definition adheres to the back-forth law, which holds for all states i8=8C and i 5 8=0; :

Γ ` i8=8C ⇒ i 5 8=0;

(Γ)−1 ` i 5 8=0; ⇒ i8=8C
(BACKFORTH)

The satisfaction of the BACKFORTH law can be understood through a two-step process. Firstly, we break down
the forward execution, denoted as Γ ` i8=8C ⇒ i 5 8=0; , into discrete sequential steps from i8 to i8+1. At each
step i8 , we identify a corresponding rewrite rule i;ℎB ⇒ iAℎB within Γ and utilize a substitution \8 such that
i;ℎB\8 ≡ i8 , thereby progressing to the subsequent step i8+1. Secondly, we initiate the backward execution
commencing with the final state i 5 8=0; . At each subsequent step i8+1, we identify a corresponding backward
rewrite rule (i;ℎB ⇒ iAℎB )−1 within the backward semantics (Γ)−1 and employ a substitution \8+1 such that
iAℎB\8+1 ≡ i8+1, effectively regressing to the previous stepi8 . The construction of the backward execution, denoted
as (Γ)−1 ` i 5 8=0; ⇒ i8=8C , takes place step by step. Specifically, it is not necessary to present the reversed version
of BACKFORTH like the round-tripping laws in Def. 1 since ((Γ)−1)−1 = Γ.
Workflow of Backward Transformation Synthesis. Leveraging the logical recovery potential of the

backward rewrite, we follow Figure 8’s steps to synthesize ?DC; . Steps 1-2 are similar to forward transformation
synthesis (discussed in Section 4.2) and focus on subsequent steps. To clarify, we provide the following segment
from the K definition for the backward transformation.

Step 2: (BC0C4+2 )−1 ← '4E4AB4�$ (BC0C4+2 ). In this step, we utilize the state declaration BC0C4+2 from the forward
synthesis and apply '4E4AB4�$ to interchange the input and output cells. This interchange modifies their initial
states without altering the overall configuration structure for rewrite rules. For example, as demonstrated in
Fig. 10 (line 2), '4E4AB4�$ identifies the input cell (“<m>”) by its content, labeled as “$PGM”, which is then
denoted as the terminal symbol “ .K”. Concurrently, the output cell (“<n>”) is assigned the content “$PGM” of
type “K”, which denotes any type defined in K including the syntax of the transformation target.

In line with the back-forth law (BACKFORTH), the unidirectional transformation DG should conclude with
(BC0C4+2 )−1 to ensure accurate recovery. Therefore, developers must ensure that the transformation DG concludes
with its initial state BC0C4 , except the input cell becomes the terminal symbol “ .K”, and the output cell is adaptable
to any model with type “K”. Step 6 offers a modifiable definition, affording developers the flexibility to make
alterations to (BC0C4+2 )−1 and thereby eliminating constraints on the final state of DG .
Step 3: 2A40C4; ← ∀i : AD;4 ∈ AD;4B. � 4 (+) 2" (i−1)). This step enhances each rewrite rule in ΓDG , integrating

backward rewriting and complements manipulation. Firstly, we apply the backward rewrite, (_)−1, to each rule
i , creating its backward. In Fig. 10 (lines 4-6, 12-15), this is shown as a reversed rewrite pattern within cells <m>,
<n>, and <s>. This reversal also includes the contents of require and ensure, as well as ensuring consistency
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1 // ( State+C)−1
2 configuration <m> .K </m> <n> $PGM:K </n> <s> .K </s> <c> .Map </c>
3 // CreateL: Complements Manipulation with Default Value
4 rule <m> HCSPs => [log( A ) , ?1? := ?2? ] HCSPs </m>
5 <n> UMLs [ P −[ C ]> P : A ] => UMLs </n>
6 <s> P </s>
7 <c> Cp:Map => Cp [[1, A , P ] <− [[ ?1? , ?2? ], [ C ]]]</ c>
8 require Cp[[1, A , P ]] orDefault . List ==K . List
9 orBool Cp[[1, A , P ]] orDefault . List ==K [[ ?1? , ?2? ], [ C ]]

10 [ priority (51) ]
11 // PutL: Complements Manipulation with Complements Holder
12 rule <m> HCSPs => [log( A ) , L := R ] HCSPs </m>
13 <n> UMLs [ P −[ C ]> P : A ] => UMLs </n>
14 <s> P </s>
15 <c> Cp:Map [1, A , P ] |−> [[ L , R ], [ _ ]]
16 => Cp:Map [1, A , P ] |−> [[ L , R ], [ C ]] </c>

Fig. 10. The K definition for the backward transformation of rule 1.

and standardization of variables within the rule. Secondly, the +) 2" function transforms variables and tokens,
appearing only on the right side of “=>”, into question marks with unique identifiers. As demonstrated in Fig. 10
line 4, variables L and R become ?1? and ?2?, respectively. This conversion enables users to define their
Default Value for unknown missing information. Lastly, � 4 function mirrors the operation in Step 4 of forward
synthesis, as shown in the following desugared format:

2A40C4; ←∀i : AD;4 ∈ AD;4B.let i ← +) 2" (i−1) in
�>=B8BC (i �� (� => � (i.2><<>=) ← (i.<8BBA , i .<8BB; )))

Note that, the interpretation of i.<8BBA and i.<8BB; is relative to the unidirectional transformation DG direction.
In the backward synthesis context, i.<8BBA represents variables/tokens unique to the right-hand side, and i.<8BB;
to those unique to the left-hand side. Fig. 10 lines 4-10 showcases the rule generated in this step.
Step 4: ?DC; ← �G�=~ ((?DCA )−1). In this step, we apply the backward rewrite to each rule in ?DCA , creating

their backward counterparts in ?DC; . The �G�=~ function exchange the postion of �=~ on the left-hand side of
?DCA , obtaining (i ′ .<8BBA , �=~) for ?DC; . This process ensures complete adherence to the BACKFORTH, enabling
a seamless transition between states in the transformation trace for recovery. The application of this step is
exemplified in Fig. 10 (lines 12-15).

Step 5: Γ?DC; ← %A8=C (B~=C0G, (BC0C4+2 )−1, 2A40C4; , ?DC; ). This step prints the modified KAST into aK definition
for Γ?DC; .

Step 6: ?DC; ←  ><?8;4 (Γ?DC; ). Finally, Γ?DC; is compiled into an executable backward transformer ?DC; using
 ><?8;4 .

In summary, these steps yield ?DC; , the backward transformation, which, in conjunction with ?DCA , achieves
formal bidirectional transformation for simultaneous consistency verification and synchronization. The round-
tripping laws’ satisfaction will be discussed in the following section.
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Let< and = respectively represent an HCSP program and a UML model, with 2= denoting missing UML information in HCSP (e.g., color).
This information is extracted as per the K definition Γ?DC; , verified by ?A>> 5! . A synchronized UML model, =′, is achieved, whose
consistency with< is confirmed by ?A>> 5' . Consistency between HCSP (") and UML (# ) is defined by ΓDG , inherited by definitions
Γ?DCA and Γ?DC; .

Fig. 11. The Workflow of Formal Synchronizer.

4.4 Formal Synchronizer for Simultaneous Synchronization and Verification
This section introduces a formal synchronizer in the KBX framework, leveraging transformers ?DCA and ?DC; .
This synchronizer ensures simultaneous synchronization and verification of consistency relation ' between
models< and =, backed by formal proofs. It also aligns with the round-tripping laws (Definition 1) to guarantee
reasonable synchronization and establishes an equivalence between ' and refinement relation 'A4 5 through
forward simulation. The workflow, including both synchronization and consistency verification processes, is
depicted in Fig. 11.
Reasonable Synchronization Satisfying Round-tripping Laws. The synchronizer inputs two models<

and = and outputs synchronized models<′ and =′. Fig. 11 illustrates a typical synchronization scenario where
< remains unchanged (< = <′), and = is adjusted to align with <. The synchronizer is versatile, allowing
synchronization in both directions due to the commutative nature of ?DCA and ?DC; . Step 1 involves applying ?DC;
to model =, extracting missing information 2= relative to model<. This step primarily uses rules from 2A40C4;

as no information in the complements holder matches rules in ?DC; . Step 2 employs ?DCA , incorporating 2= into
the complements holder, to produce the consistent model =′. This step relies on rules in ?DCA , where missing
information is available in the complements holder.

These two steps are integrated into ?DCA as outlined in Definition 1, and reversing their order results in ?DC; ,
ensuring compliance with the round-tripping laws. To elaborate, upon completing these steps, the output is
(=, 2′) as per PUTLR. Applying the transformer ?DC; to this output yields the same (<,2′). The complements
holder remains unchanged since steps 1 and 2 have already captured the information from both< and =, and the
rules in both 2A40C4A and ?DCA preserve identical information for the same source. Consequently, the original<
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is retrieved using only the rules in ?DC; . The rules in Γ?DCA and Γ?DC; adhere to the BACKFORTH law, barring the
complements holder. For instance, regardless of whether a rule is in 2A40C4A or ?DCA , applying ?DC; retrieves the
same left-hand side, leading back to< from (=, 2′). Since the BACKFORTH law is directionally neutral, this process
is reversible, ensuring the round-tripping laws are fully met.

Reliable Consistency Verification Comparable to Refinement Verification. Steps 3-4 in the consistency
verification process verify the consistency between< and =′. Step 3 generates proof ?A>> 5! , confirming that the
generation of 2= aligns with Γ?DC; rules. Step 4 produces proof ?A>> 5' , verifying the consistency of =′ with< as
per the K definition Γ?DCA . Both proof generation processes follow the methodologies presented in [Chen et al.
2021a]. These processes involve initially producing proof hints during transformation. Subsequently, we leverage
these hints to construct Metamath proofs. These proofs encompass axioms derived from the K definition, a proof
goal that validates the correctness of the rewriting from i8=8C to i 5 8=0; , and a demonstration using the matching
logic proof system and axioms to substantiate this goal. We then employ a Metamath checker to confirm that the
generated proof satisfactorily resolves the proof goal. Proof generation, independent of transformer application
order, is grounded in ΓDG and synthesis algorithms, forming the formal definition of consistency relation '.

Definition 9. The consistency relation ' between arbitrary models< : " and = : # is defined as follows,

(<,=) ∈ ' ≡ Γ?DCA `< f= f2 fB ⇒ f< =′ 2 fB ∧ Γ?DC; ` = f< 2 fB ⇒ f= < 2′ fB

or equivalently,

(<,=) ∈ ' ≡ Γ?DC; ` = f< f2 fB ⇒ f= <
′ 2 fB ∧ Γ?DCA `< f= 2 fB ⇒ f< = 2′ fB

The relation ' between models< and = has two equivalent definitions based on the application order of Γ?DCA
and Γ?DC; . In both of these definitions, the left side of the conjunction is employed for acquiring complements
based on ΓDG , while the right side of the conjunction ensures the consistency defined within ΓDG . Intuitively, the
first definition represents a matching logic proof where ?DCA (<, ∅) = =′, 2∧?DC; (=, 2) =<,2′ from the perspective
of a symmetric lens. The second definition is the reverse: ?DC; (=, ∅) =<′, 2 ∧ ?DCA (<,2) = =, 2′.

Our consistency verification, based on these definitions, ensures both syntactic consistency (models conform
to a specific syntax) and semantic consistency (models have the same meaning), similar to refinement verification.
The consistency definition ΓDG should have correct syntax and semantics for synchronization targets, just as
formal semantics must be accurate for refinement verification. If the syntax is incorrect, the verification will
fail because the incorrect syntax is not defined in matching logic theory ΓDG . If the semantics (both static and
dynamic) are incorrect, there is no rule to match the incorrect state and transition the input model to the output
model. For example, if there is only a send message in the HCSP program, the transformation process will be
stuck in a deadlock, preventing the achievement of an empty state fB to conclude the transformation. To illustrate
this semantic consistency, the refinement relation 'A4 5 is defined similarly, but with operational semantics Γ"

and Γ# .

Definition 10. The refinement relation 'A4 5 between arbitrary models< : " and = : # is defined as follows:

(<,=) ∈ 'A4 5 8=4 ≡ (Γ" `< fB< ⇒ f< B<)
∧ (Γ# ` = fB= ⇒ f= B=)
∧ '( fB< fB= ∧ '( B< B=

Here, Γ" and Γ# are the operational semantics for models< and =, while B< and B= represent the execution
states for these semantics. fB< and fB= refer to the initial states of< and =, respectively, and '( defines the state
relation predicate pattern. The semantics Γ" and Γ# are defined as follows: ∀< :",= :# . ∃B< :(" , B= :(# .

Γ" `< fB< ⇒ f< B< Γ# ` = fB= ⇒ f= B=
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Hence, there are three types of compliance relations between consistency relation ' and refinement relation
'A4 5 : (1) ' is an equivalent of 'A4 5 (written ' = 'A4 5 ); (2) ' is a refinement of 'A4 5 (written ' ⊂ 'A4 5 ); (3) 'A4 5
is a refinement of ' (written 'A4 5 ⊂ '). Table 1 compares KBX-based consistency verification and refinement
verification for models< and =.

Table 1. Comparison of KBX-based Verification and Refinement Verification.

KBX Refinement

Trust Base Γ?DCA , Γ?DC; (or ΓDG , Synthesis) Γ" , Γ# , '(
Applicable Complex M,N; Simple M,N Relation Simple M,N; Complex M,N Relation
Method Verified Synchronization Symbolic Execution or Theorem Proof

On Failure Automatic Alignment Manual Alignment

In summary, KBX provides a formal synchronizer that facilitates reasonable synchronization and reliable
consistency verification between models< and =.

5 EVALUATION
We have implemented the proposed approach in the KBX tool, which is built on top of the K formal framework.
To assess the effectiveness of our KBX, we address the following research questions:

• RQ1: How does the development efficiency and trustworthiness of KBX compare to the existing BX
frameworks?
• RQ2: How does KBX perform in terms of both its expressiveness and trustworthiness as a verification

approach?
• RQ3: How can KBX facilitate the development of formal BX between UML and concurrent HCSP to

address our industrial scenarios?

5.1 RQ1: Comparison with Existing BX Framework
In this section, we compare KBX against other BX frameworks using the criteria of development efficiency(E)
and trustworthiness(T) in Table 2. Concerning [Anjorin et al. 2020; Buchmann et al. 2022], we choose typical
and relevant BX frameworks for comparison, including BiGUL [Bettini and Efftinge 2016; Ko et al. 2016], BiY-
acc [Zhu et al. 2015], JTL [Cicchetti et al. 2011], eMoflon [Weidmann et al. 2019], NMF [Hinkel and Burger 2019],
EVL+Strace [Samimi-Dehkordi et al. 2018], BXtend [Buchmann 2018]+BXtendDSL [Buchmann et al. 2022], and
Hobit [Matsuda andWang 2018]+Synbit [Yamaguchi et al. 2021]. Specifically, we present the following assessment
questions to qualify for the industrial requirements:

E: The capability of constructing BX efficiently:
E1: Can we construct symmetric BX without implementing two asymmetric BX programs?
– Rationale: Missing information on both sides of synchronization necessitates two asymmetric lenses,

raising implementation costs and increasing the likelihood of errors in synchronizer development
and maintenance.

E2: Can we construct BX in consistency definitions (e.g., unidirectional transformation definitions)
without implementing the BX programs?

– Rationale: Although every programming language can implement BX, the consistency definition
streamlines this by merging two-sided transformation and complement concepts into one represen-
tation.
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Table 2. The satisfaction of BX frameworks in terms of Expressiveness (E) and Trustworthiness (T).

KBX BiGUL BiYacc JTL eMoflon NMF EVL+ BXtend Hobit

E1 §4.1 3 6 7 3 9 3 11 12
E2 §4 4 6 7 3 9 10 11 13
E3 1 5 6 3 3 3 3 11 12
T4 §4 5 6 8 3 3 3 11 12
T5 1 5 6 8 3 3 3 11 12
T6 §4.1 4 6 8 3 9 3 11 12
T7 2 5 6 8 3 3 3 3 12

The green color in the table indicates satisfaction, while the red color signifies non-satisfaction. The numbers or section numbers in the table
provide the corresponding evidence for these conclusions.

1 [Chen et al. 2021a]; 2 K Framework; 3 [Anjorin et al. 2020]; 4 [Ko et al. 2016]; 5 [Hu and Ko 2018]; 6 [Zhu et al. 2020];
7 [Cicchetti et al. 2011]; 8 [Eramo et al. 2018]; 9 [Hinkel and Burger 2019]; 10 [Samimi-Dehkordi et al. 2018];
11 [Buchmann et al. 2022]; 12 [Matsuda and Wang 2018]; 13 [Yamaguchi et al. 2021]

E3: Can we construct BX with BNF-like grammar without implementing parsers, printers, etc?
– Rationale: Given that our intended synchronization targets are models or programs in various

languages, the BX framework should automatically generate synchronizers that can manage these
targets efficiently without additional effort.

T: The capability of trustworthiness for verification:
T4: Can we define formal correctness specification for bidirectional transformation directly?
– Rationale: If the answer is affirmative, BX developers can formally verify their BX programs, elimi-

nating the implementation and trust in translating into formal frameworks.
T5: Can we verify the formal specification during the synchronization?
– Rationale: This guarantees rigorous adherence of the synchronized targets to the user-defined formal

specifications.
T6: Can we guarantee the BX behavior by explicit laws?
– Rationale: BX without an explicit rule lacks a clear definition of rational synchronization.

T7: Can we validate the execution of BX with a proof checker?
– Rationale: This question ensures that the synchronized targets adhere to the formal definition of

consistency, which is reliable and can be readily verified by a third party.
Table 2 displays the BX frameworks’ evaluation results, with each cell indicating a framework’s response

to an assessment question. A “Yes” response is green and a “No” response is red. Every response in the table
refers to specific evidence, indicated by a corresponding number at the table’s bottom. Under the same evaluation
methodology, we present the relation between our evidence with the assessment question as follows.

E1: Section 4.1 captures the symmetric lenses. As noted in [Anjorin et al. 2020] and their own literature, JTL,
eMoflon, NMF, EVL+Strace, and BXtend support handling missing information on both sides.
In contrast, BiGUL uses a putback-based method for asymmetric lenses. According to [Anjorin et al.
2020], it requires an intermediate representation and two BX programs to handle missing information
on both sides. Similarly, BiYacc and Hobit rely on the asymmetric lens, thus they cannot handle missing
information on both sides.

E2: Sections 4.2 and 4.3 introduce the bidirectional transformation synthesis algorithm. Other BX frameworks
also provide bidirectional programming methods to generate BX programs.
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E3: Section 4.1 takesK specifications as input and output, while theK framework can generate corresponding
tools automatically. Additionally, [Chen et al. 2021a] presents a simpleK definition with BNF-like grammar.
BiYacc is specifically designed to facilitate the simultaneous development of parsers and printers, sup-
porting BNF-like grammar. However, its specialization likely limits its expressiveness. As [Kinoshita
and Nakano 2017] demonstrates, it is necessary to combine BiYacc and BiGUL to achieve bidirectional
transformation between two languages.
In contrast, other bidirectional transformation (BX) methods do not consider the generation of parsers
and printers essential for a BX framework. This lack of integration results in less intuitive and concise
definition of consistency between languages, such as directly mapping the grammars of the synchroniza-
tion targets “log( A ); L := R ;” to “ P -[#black]-> P : A ”. Furthermore, it necessitates additional code
for implementing the synchronization targets’ parsers and printers. This added complexity hampers the
review of the trust base (i.e., consistency definition), making it more challenging to ensure trustworthiness.
Consequently, the application of BX across different programming languages is limited.

T4: Section 4.1 shows that KBX’s input is aK definition that allows specifications for correctness like [Alpuente
et al. 2020; Hathhorn et al. 2015]. Since the algorithms in Sections 4.2 and 4.3 focus on the complements
recovery and don’t modify the specification, the correctness specification also affects the bidirectional
transformation.
Other methods do not describe BX using a formal language with an embedded proof system. BiGUL is the
closest, having formalized its lens semantics in AGDA. However, its bidirectional programming language
does not inherently possess a sound proof system, making it impossible to describe and prove correctness
specifications for its synchronization targets.

T5: Section 4.1 takes K specifications as input and output, while K allows symbolic execution for verification
using these specifications.
Unlike our approach, other BX frameworks lack formal verification methods, such as symbolic execution,
model checking, or abstract interpretation, during synchronization. Moreover, we did not find any textual
or code-based evidence of integrating SMT solvers, which would result in a large and unreliable trust
base.

T6: Section 4.1 formalizes the round-tripping laws within matching logic. Sections 4.2 and 4.3, present
algorithms to synthesize bidirectional transformations that align with these laws.
For general BX frameworks, correctness—or the guarantees defined in [Anjorin et al. 2020]—is the
satisfaction of the explicit laws. Consequently, this criterion is generally satisfied by all such frameworks.
However, we did not find the definition of reasonable synchronization for EVL+Strace in either [Samimi-
Dehkordi et al. 2018] or the survey [Anjorin et al. 2020].

T7: Sections 4.2 and 4.3 demonstrate KBX’s ability to generate bidirectional transformation K specifications.
Subsequently, we can employ these specifications to verify the execution of BX automatically using the
method proposed in [Chen et al. 2021a].
Some other BX frameworks provide methods to ensure synchronization meets user-defined specifications.
However, without formal semantics (except for BiGUL), these user-defined specifications are informal and
ambiguous. Even with formal semantics, no framework offers a formal verification method, as explained
in T5. In summary, none rely on third-party proof checkers for high-assurance formal verificatio, nor
even less reliable SMT solvers.

To intuitively illustrate KBX’s efficacy in constructing BX, we employ the Family and Person BX benchmark
introduced by [Anjorin et al. 2020]. This benchmark involves maintaining consistency between two models with
missing information on both side: (1) a families model with a list of families, each containing a family name and
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members with their first names and roles, and (2) a persons model with a flat list of names and edges. Table 3
presents the definition size statistics for different BX frameworks.

Table 3. Size of the transformation definitions of all solutions.

KBX BiGUL BiYacc JTL eMoflon NMF EVL+ BXtend Hobit

LOC 32 176 - 227 217 279 1299 211 -
N words 312 1010 - 773 337 607 2878 565 -

KBX synthesizes 2491 words definition for bidirectional transformation.

The table presents several metrics, including Lines of Code (LOC) and word counts (N words), with a ”-”
indicating missing data. The data reveals that constructing BX with KBX requires the least human effort. This
benchmark exclusively employs JSON as both input and output formats and omits the line of code count for
the parser and printer, which constitutes a significant portion. Indeed, the generated definition extends to 2,459
words, highlighting the substantial labor involved in implementing BX within the K framework without the
assistance of KBX.

In summary, despite graphical limitations such as the absence of a graph language and interface,KBX surpasses
other BX frameworks for a specific set of queries.

5.2 RQ2: Capability as a Verification Approach
In this section, we shift our attention from KBX synchronization capabilities to its formal verification potential.
We will compare KBX with existing verification methods to answer two crucial questions:

• RQ 2.1: What level of verification can we achieve through KBX expressiveness?
• RQ 2.2: How trustworthy are the outcomes of this verification process?

RQ 2.1: We first evaluate the consistency definition (i.e., input) of KBX by revealing its expressiveness as a
correctness specification step by step.

First, we consider the theoretical maximum expressiveness based on matching logic, which captures many
important logics in mathematics and computer science, including first-order logic with least fixpoints, modal
`-logic, separation logic, dynamic logic, various temporal logics and reachability logic [Chen and Roşu 2019].
Notably, verification using reachability logic is no harder than using Hoare logic [Stefănescu et al. 2016]. Hoare
logic is widely used in theorem-proving-based program verification, such as the renowned seL4 [Klein et al. 2014,
2010].

Second, based on matching logic, theK framework provides language-agnostic verification through reachability
logic for languages with formal semantics defined in K [Stefănescu et al. 2016]. This includes languages such as
C [Ellison and Rosu 2012], Java [Bogdanas and Roşu 2015], JavaScript [Park et al. 2015], and x86-64 [Dasgupta
et al. 2019]. Consequently, KBX, which is built upon the K framework, inherits these verification capabilities.

Lastly, we evaluate whether our input restrictions affect the expressiveness for correctness specification. The
expressiveness is considered unrestricted when individual rewrite rules, the fundamental unit for specifying
correctness, are unconstrained. Furthermore, we argue that overall semantic restrictions do not compromise
expressiveness but instead refine a specific set of semantics, akin to classifying a language feature as object-
oriented. We review all definitions and algorithms presented in the paper:

In Section 4.1: (1) Definition 4 characterizes the input as a model transformation" → # that supports dynamic
semantic descriptions, enabling state model ( . In contrast, general formal semantics are represented as Γ" or Γ#
in Section 4.4. Thus, Definition 4 refines (" into the transformation target # and the state model ( needed for
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the transformation. This is similar to considering state cells <n> and <s> (in Fig. 5) as both (" or more precisely
as #( . Furthermore, the additional requirement of Definition 4 is that <n> must be a PlantUML symbol after the
transformation. This not only preserves expressiveness but also precisely defines the transformation target as a
program conforming to PlantUML syntax. (2) Definitions 5 and 6 specify the KBX-generated definitions, without
affecting user-provided consistency definition.

The algorithms in Sections 4.2 and 4.3 manipulate each rewrite rule of the consistency definitions but do
not impose restrictions on how users write them. Instead, we construct correctness specifications and generate
preconditions, such as those on lines 8-9 in Fig. 9, to avert inconsistencies between the transformation source
and stored complements. Additionally, the limitations mentioned in Section 4.2 are not limitations on user-
defined syntax but design choices for the complements holder: default order sensitivity or not. If we record order
information, lines 3-4 and 8-9 in Fig. 6 can be interpreted as distinct semantic elements, corresponding to different
arrow colors. However, in our current design, they can only correspond to one arrow color based on generated
preconditions. Beyond the reasons mentioned in Section 4.2, we contend this is reasonable as they possess the
same semantics and thus must maintain the same semantics in UML. This does not diminish expressiveness for
verification.

This design even affords greater flexibility for BX, as this order information can be constructed within the
consistency definition, akin to placing the HCSP process identifier in <s> (line 6 in Fig. 5). Implementing this
semantics is simpler because it is not a concurrent semantic context like the HCSP process. Conversely, designing
the complement holder as order-sensitive (e.g., a list of (2><<>=,<8BB8=6) replacing 2><<>= →<8BB8=6) would
impede the construction of order-independent BX and prevent automatic verification of non-ambiguity semantics
in synchronized targets. Specifically, it would fail to ensure that the semantics of lines 3-4 and 8-9 in Fig. 6 are
unambiguous in UML, i.e., ensuring that all UML line colors are green.

To summarize RQ 2.1, the expressiveness of KBX for verification can be intuitively described as shown in
Fig. 12: KBX utilizes theK framework without limitations on its expressiveness for verification. TheK framework
employs reachability logic, which is comparable to Hoare logic, widely used in theorem-proving-based program
verification.

Reachability
LogicKBX K

use use Hoare
Logic

use Typical Formal
Verification

Fig. 12. Expressiveness Comparison for Verification

RQ 2.2: To assess trustworthiness, we examine the trust base of KBX—a critical factor necessary for establishing
confidence in the verification outcome.

Table 4. Comparison of Trust Base

Approach Consistency Definition Trusted Kernel Other Trust Base

KBX ΓDG 245 + 74 1015
K Γ" , Γ# , '( Same as above -
Isabelle Same as above 2152 Translation to Isabelle
Coq Same as above 2666 Translation to Coq
Lean Same as above 6132 Translation to Lean
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Table 4 presents the trust bases for different formal frameworks, each aimed at verifying the semantic con-
sistency between two models,< ∈ " and = ∈ # . For each method, the trust base comprises the consistency
definition, trusted kernel for verification, and other trust base. For KBX, the consistency definition employs a
unidirectional transformation definition from " to # denoted as ΓDG . The trusted kernel consists of 245 lines
of Matching Logic formalization [Chen et al. 2021a] and 74 lines of Mathematica code implementing the proof
checker13. Additionally, the other trust base includes 1015 lines of KBX implementation code or the formal
definitions generated by this code. The K Framework employs formal semantics Γ" , Γ# and the state relations
'( between them, sharing the same trusted kernel as KBX, with no additional trust base. Isabelle, Coq, and Lean
also utilize refinement verification, with their trusted kernels consisting of 2152 lines of ML code14, 2666 lines of
OCaml code15, and 6132 lines of C++ code16 respectively. When models are not within the formal framework,
these methods require translation of" and # into their respective frameworks, which constitutes their additional
trust base. In comparison to these tools with small trust base, typical SMT solvers like Z3 have a codebase
exceeding 500,000 lines, indicating a significant difference in scale. Therefore, we assert that even trusting the
KBX implementation still falls within the magnitude of theorem proving trust bases.

In summary, KBX has the capability to verify model correctness, consistency, and refinement with a
small trust base and minimal constraints on the expressiveness of K.

5.3 RQ3: Formal HCSP and UML BX for Industrial Scenarios
This section presents the first HCSP and UML BX, showcasing KBX’s real-world effectiveness in addressing
industrial challenges (Section 3.1). This BX enables automatic synchronization of the HCSP and UML models
and verification of their consistency. During our collaboration with an industry partner, we focus on modeling
and validating a critical function in maglev train systems: partition handover. The function, encompassing 13
system components and 29 message types, requires seamless and secure transitions of maglev trains between rail
segments and communication partitions. This necessity arises from the constraints of limited rail length and
wireless communication range. Due to the use of different modeling languages, the development and verification
of multiple models is tedious and error-prone. For example, communication and synchronization take up most of
the time during the five iterations to construct the 15 UML diagrams and 10 HCSP scenarios. Throughout these
iterations, we identified 58 problems: 52 were due to model inconsistencies (discrepancies between requirements
and design), 4 were safety issues detected via HCSP simulations (such as trains failing to stop as expected), and 2
stemmed from miscommunications leading to misunderstandings of requirements.

Therefore, to streamline our efforts and rigorously prove the consistency of this safety-critical system,we explore
various methods for model synchronization and verification. Table 5 outlines the costs before synchronization
(Construction Costs), the expenses for maintaining and verifying consistency (Usage Costs), and the benefits
resulting from synchronization and verification. Among these approaches, KBX offers an avenue for achieving
verified synchronization with reduced costs while maintaining the trustworthiness of the formal method.

Using KBX, we first construct the HCSP to UML K transformation. Then, the synthesizer generates the UML
and HCSP BX K transformation definitions, as described in Sections 4.2 and 4.3. These definitions are used for
synchronization and consistency verification, as per Section 4.4.

Table 6 illustrates the features we have supported for HCSP and plantUML. The first row denotes the features
supported for HCSP, while the second row pertains to the features supported for plantUML. While some features
may not be included, the supported set consists of all crucial HCSP features, sufficient for modeling high-speed
13Various alternative implementations of the proof check are in https://us.metamath.org/other.html#verifiers; also includes 350 lines of
Python, 400 lines of Haskell, etc., accessed on July 1st, 2024
14https://github.com/seL4/isabelle/blob/master/src/Pure/thm.ML
15https://github.com/coq/coq/tree/master/checker
16https://github.com/leanprover/lean4/tree/master/src/kernel
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Table 5. Comparison of Consistency Maintenance and Verification Approaches

Approach Construction Costs Usage Costs Benefits

Manual (1) Consistency definition documen-
tation.

(1) Manual model synchronization. (2)
Consistency documentation.

Traceable consistency of
manual safeguards

Verified
Translator

(1) translator from HCSP to UML. (2)
translator from UML to HCSP. (3) ver-
ification of the translators.

(1) Automatic translation Verified consistency
without complements

Forward
simulation
& BX

(1) BX program for HCSP and UML
synchronization.

(1) Automatic synchronization. (2)
Verification and (3) Correction of the
synchronized models.

Verified consistency

Formal BX (1) formal specifications of forward
transformation and (2) backward
transformation (3) verification of
round-tripping laws

(1) Automatic synchronization with
formal validation.

Verified consistency

KBX (1) formal unidirectional transforma-
tion specification

(1) Automatic synchronization with
formal validation.

Verified consistency

Table 6. Support statistics for HCSP and plantUML.

HCSP skip assignment channel wait conditional interrupt hybrid
plantUML message comment loop option alt group color

maglev train partition handover behavior. Next, we outline some of the technical steps involved in constructing
the HCSP and UML BX: (1) Developing a unidirectional transformation from HCSP to plantUML. (2) Synthesizing
a bidirectional transformation definition between HCSP and plantUML. (3) Performing synchronization and
verification using these definitions.

Developing a unidirectional transformation from HCSP to plantUML. First, we construct a transforma-
tion definition from HCSP to PlantUML within the K framework. We opt for this approach because it simplifies
the process by starting with deterministic semantics while also offering ample support for HCSP features. This
definition encompasses the syntax of both HCSP and PlantUML, defines the program configuration to describe the
state structure and initial state, and formulates rewrite rules to specify the relation between HCSP and PlantUML.
Program configuration. Fig. 13 visually represents the configuration related to " , # , and ( discussed in

Section 4.1. The HCSP programs to transform are contained in hcsp, while the transformed models in UML are
stored in uml. The state ( is instantiated by tmp and threads, initialized with empty list and map.

〈〈hcsp〉ℎ2B? 〈uml〉D<; 〈list〉C<? 〈id ↦→ k〉CℎA403B
〉
1G

Fig. 13. Transformation Configuration for UML and HCSP BX.

Rewrite rules. Constructing these rules presents challenges owing to semantic disparities. For instance, both
HCSP and UML sequence diagrams incorporate communication, but HCSP applies channels for message trans-
mission, while UML dispatches messages directly to objects. This divergence becomes even more intricate when
addressing loops, interrupts, and other functionalities. Therefore, we introduce some of HCSP’s concurrent
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semantics (i.e. spawn and join) to accurately describe the transformation process. The following phases offer a
glimpse into our semantics.

(1) Spawn: The first phase spawns all the processes from hcsp to threads. Variables are assigned as follows: id
is set to the process identifier, k is set to the statements of the process.

(2) Transformation: The second phase constructs the transformation from HCSP statements to UML “state-
ments”, which is the key part of the transformation specification.

(3) Join: The third phase join processes into tmp, and delete the corresponding threads in threads.
(4) Termination: In the final phase, the synchronized list in tmp is moved to uml and converted into a

PlantUML sequence diagram.

Table 7. Size of the transformation definitions.

Unidirectional Forward Backward Total Generated

N words 1139 2019 2053 4072

Synthesizing a bidirectional transformation between HCSP and plantUML. Second, KBX derives
bidirectional transformation definitions from the given unidirectional transformation definition. Table 7 provides
a comparison between transformations producedmanually and those generated by KBX. By handling complements
and round-tripping laws—typically the most challenging aspects—KBX simplifies the development process and
alleviates users’ burdens. Notably, KBX reduces code volume by 72%, calculated as follows:

)>C0;�4=4A0C43 −*=838A42C8>=0;
)>C0;�4=4A0C43

Performing synchronization and verification using these definitions. Finally, we employ the K frame-
work to generate tools from these generated BX definitions for synchronization and verification. These tools are
executable and verifiable, facilitating synchronization while generating proof hints during the process. Existing
works [Chen et al. 2021a; Lin et al. 2023] take these hints and the K definitions as inputs to produce proofs. Thus,
we can achieve automatic model synchronization and simultaneous verification of their consistency.

Table 8. Performance of KBX.

Process Time (s)

BX Definitions Generation 0.02
Tool Generation 24.18
Forward Creation (10 LOC) 5.20
Forward Creation (100 LOC) 2.21
Forward Creation (1000 LOC) 6.26
Forward Creation (Proof Hints) 8.96
Forward Synchronization 6.82
Backward Synchronization 4.58

Experimental Setup: Apple M2, 16GB RAM, macOS Sonoma 14.5, K 7.1.23.

Table 8 presents the performance of KBX in generating BX definitions and using the K framework to generate
tools for synchronization and verification. The results show that KBX is efficient in generating BX definitions.
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The tool generation process, which uses the “kompile” command in K, takes more time but is acceptable since
it only needs to be performed once. Forward creation measures the time taken to convert HCSP to PlantUML
without complements, showing times of 5.2, 2.2, and 6.2 seconds for 10, 100, and 1000 lines of HCSP, respectively.
Although synchronization times indeed correlate with the complexity of the user-defined K definitions and the
scale of the synchronization targets, the longer time for 10 lines compared to 100 lines, and the similar times for
100 and 1000 lines, suggest that parsing and printing, rather than rewriting, might be the most time-consuming
phases. These times are expected to improve with ongoing optimizations in K. Nonetheless, our primary goal is
not real-time synchronization but the generation of proofs for consistency verification in safety-critical systems.
In this context, the time required to generate proof hints and perform forward and backward synchronization
with complements is acceptable.

In summary, KBX is effective in the development of real-world formal HCSP and plantUML BX,
significantly improving the efficiency of this process.

5.4 Threats to Validity
Here, we discuss several threats that may affect the validity of our evaluation, following the typical classifications:
construct validity, conclusion validity, internal validity, and external validity [Wohlin et al. 2012].
Construct Validity. The primary goal of this paper is verified synchronization for safety-critical systems,

focusing on both the expressiveness and trustworthiness of synchronization and verification. Thus, the threat
to construct validity is whether our RQs and metrics fully and accurately cover our objectives. To mitigate
this, we ensure the first two RQs focus on synchronization and verification, while the third RQ demonstrates
practical applicability. To ensure the detailed evaluation metrics align with our primary goal, we reviewed the
synchronization and verification workflows to obtain a comprehensive set of metrics, and checked the accuracy
of these metrics through rational analysis. Specifically, we checked the following rationale for different types
of metrics: (1) ease of development and review for synchronization expressiveness; (2) application of formal
methods and formal verification for synchronization trustworthiness; (3) consistency definitions as a correctness
specification for verification expressiveness; and (4) the trust base size for verification trustworthiness.
Conclusion Validity. Threats to conclusion validity concern the reliability of the methods used to derive

results and infer conclusions. To obtain reliable results for metrics, we used peer-reviewed literature where
possible and provided replication packages and official links to ensure reproducibility. For accurate conclusions,
we evaluated qualitative metrics for RQ1, supplemented by quantitative metrics, because quantitative analysis
is not directly aligned with our primary goal. For instance, code length does not equate to expressiveness, and
performance does not impact trustworthiness. In RQ2, we analyzed KBX’s workflow, theory, and implementation,
comparing the trust base sizes. Conclusions for RQ3 were based on statistical comparisons between generated
and human-written definitions.

Internal Validity. Internal validity threats pertain to dependencies between evaluation factors and KBX. RQ1
remains unaffected as our method is theoretically based on matching logic and implemented using K, which
are distinct from other BX frameworks. For RQ2, the expressiveness and trustworthiness of K could threaten
implementation validity. However, our theory’s foundation in matching logic facilitates future migration to other
theorem provers, because matching logic can be constructed within other theorem provers like Lean 17. RQ3
presents no internal validity threats since both our theory and implementation are language-independent.

External Validity. Threats to external validity concern the applicability of our method in broader scenarios.
To mitigate these threats, we employed the third-party Families2Persons benchmark and provided a complex
HCSP and PlantUML. Additionally, the formal framework K on which our method is based has been used for
complex languages like C and Java, supporting its applicability to diverse languages.

17https://gitlab.com/ilds/aml-lean/MatchingLogic/, accessed on July 1, 2024
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To minimize selection bias, we adopted several measures. In RQ1, we included BX frameworks from [Anjorin
et al. 2020] and extended two works focusing on expressiveness. We did not extend works on trustworthiness
because no BX frameworks using theorem provers other than BiGULwere found. In RQ2, we comparedwidely used
theorem provers—Coq, Lean, and Isabelle/HOL—noting that other theorem provers should not differ significantly
in trust base.

6 RELATED WORK
Consistency Verification. To verify complete systems, the utilization of multiple models is imperative due

to limitations imposed by the language, the intricacy of the system itself, and the need to adhere to certain
standards [Kulik et al. 2022; Reid et al. 2020]. Researchers have employed various approaches, such as refinement
verification, translation validation, and verified translators, to guarantee the consistency of these models.

Refinement verification [Back and Wright 2012; Morgan et al. 1988] is a common mechanism for ensuring
consistency through forward simulation. For instance, [Chen et al. 2018; Klein et al. 2010; Li et al. 2021] verify
the consistency of models across various abstract levels, ensuring the correctness of the operating system,
device driver, and hypervisor. Translation validation is another approach for consistency verification [Bang et al.
2022; Lopes et al. 2021; Sewell et al. 2013], which automatically validates the correctness of the compilation
process, ensuring the consistency between compilation sources and targets. Previous studies [Lano et al. 2015;
Leinenbach 2008; Leroy 2012; Srivastava et al. 2010] proposed transformation verification methods to obtain
verified translators. These approaches can automatically convert models while rigorously ensuring consistency.
However, they only offer unidirectional transformations without the capability to recover missing information or
perform reverse transformations.

Bidirectional Transformation. In contrast to these formal verification methods, BX frameworks typically
focus on implementing model synchronization to maintain consistency. Consistency in BX refers to whether a
pair of state-based transformation operations or delta-based propagation operations conform to specific criteria
(e.g., well-behavedness as defined in [Hidaka et al. 2016]). This differs from formal verification, which generally
ensures that two models comply with a specific relation within their respective semantics.

Regarding expressiveness, BiYacc [Zhu et al. 2015] presents a language-oriented language to roll the parser
and reflective printer into one. Hobit [Matsuda and Wang 2018] enhances expressiveness by eliminating lens
combinators, providing greater flexibility in representation. Hinkel and Burger [2019] (i.e., NMF) took a different
approach by reusing the C# language to design a domain-specific language for bidirectional programming. We
adopt the K definition to allow users to define formal consistency intuitively, without needing lens combinators
or implementing parsers and printers.

In terms of trustworthiness, BX frameworks often prioritize rational synchronization over typical verification
or validation, which aims to ensure that transformations conform to their specifications and accurately reflect
user requirements. For example, BiGUL [Ko et al. 2016] employs formal verification in BX to ensure the recovery
of missing information, i.e., round-trip or well-behavedness. As noted by [Anjorin et al. 2020; Hildebrandt et al.
2013], tools like [Hermann et al. 2011] and eMoflon [Weidmann et al. 2019] define algorithmic correctness
based on TGG (Triple Graph Grammars) semantics and provide proofs, although not within theorem provers.
However, TGG is merely an abstract formalism, and users need a specific language to construct one. For example,
BXtend [Buchmann 2018] offers an internal DSL based on Xtend, which lacks formal semantics like those of
K-Java [Bogdanas and Roşu 2015]. Furthermore, algorithmic correctness does not guarantee implementation or
execution correctness. Tools like JTL [Cicchetti et al. 2011] and EVL+Strace [Samimi-Dehkordi et al. 2018] define
consistency through constraints using ASP (Answer Set Programming) and EVL (Epsilon Validation Language),
enabling synchronization result checks. However, their trust base is significantly larger than that proposed
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by theorem proving. For example, ASP solvers introduce a substantial trust base (over 100,000 lines of code18).
Moreover, BX programs not constructed within a formal framework cannot be formally verified. In contrast, KBX
aims to embed all aspects of BX within a formal framework, enabling the construction of complex, verifiable
formal consistency definitions and providing consistency verification through proof generation with a small trust
base.

To enhance the efficiency of developing BX programs, researchers have dedicated efforts to synthesizing BX
through various approaches. For instance, Yamaguchi et al. [2021] use unidirectional sketches to synthesize
bidirectional programs, while Maina et al. [2018]; Miltner et al. [2018, 2019] employ a pair of regular expressions
and example input-output pairs to achieve this automation. Given a partial specification, these algorithms are
designed to narrow down the search space for identifying a suitable BX program within the context of existing
BX frameworks. Compared to these recent works, KBX differs in that (1) it supports more flexible syntaxes and
focuses on synthesizing formal BX specifications (recall that the actual transformers are generated by K); (2) it
uses formal unidirectional transformation specifications, without the need for additional input-output examples;
(3) it rests on our backward rewriting for deterministic and efficient synthesis, instead of previous type-directed
enumerative algorithms.

7 DISCUSSION
Compared to previous BX frameworks, KBX deeply integrates formalmethods and BX towards aminimal trust base
for verified synchronization in safety-critical systems. The proof generation ensures synchronization conforms to
formal consistency definitions, offering consistency verification comparable to widely-used refinement verification
in high-assurance evaluations. However, our approach has some limitations that future work could address.

First, the trust base can be further reduced. Currently, our prototype requires users to trust either our imple-
mentation or the generated bidirectional transformation definition along with the proof checker. Ideally, users
should only need to trust the consistency definition and proof checker. Future work could involve implementing
verified KBX within formal frameworks like K or Lean.

Second, our work does not yet consider the usability and performance features present in other BX frameworks,
such as incremental transformation and conflict resolution. Incorporating these features could enhance the
performance and usability of KBX. Based on the feature-based classification proposed by [Hidaka et al. 2016],
KBX can be categorized as follows: (1) Technical Space: Textual Artifacts; (2) Correspondence: Allow missing
information on both sides, user-defined coverage; (3) Definition Directionality: Users provide unidirectional
definitions, and KBX generates bidirectional transformation definitions; (4) Expressiveness: Turing complete;
(5) Changes: State-based representation, offline input, complete support; (6) Execution: Enforcement semantics,
automatic execution, full application, semantic approach, explicit backward transformation, explicit traces, trace
out of models, standard traces, complement out of models; (7) Well-Behavedness: acceptability, consistency,
composability, preservation, propagation, undoability, functional behavior.

Third, verifying informal models, such as images and natural language, poses a significant challenge for
theorem-proving-based verification methods, including KBX. For instance, we ensure consistency between
HCSP programs and PlantUML programs but do not verify the consistency between PlantUML and the final
rendered image. Although this approach suffices for our motivating example, an ideal solution would involve
representing informal models as verifiable mathematical models instead of opaque vectors or matrices. Progress
in AI explainability and formalization research may gradually address this issue.

Fourth, our implementation does not fully support allK language features, which requires further enhancement.
For example, the hook attribute binds syntax productions to specific C++ implementations or SMTLib in K. This
affects the automatic synthesis of bidirectional transformation definitions for certain K built-ins, like “+Int”.

18https://github.com/potassco/clingo, accessed on July 1, 2024. JTL uses DLV https://dlv.demacs.unical.it/home, which is not open source.
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In such cases, users need to manually adjust the generated definitions according to our theory. Specifically,
synchronizing “ X +Int Y ” with its result “ ?Z ” is akin to synchronizing “log( A ); L := R ;” with “ P -[ C ]->
P : A ”. Both lose information on both sides; however, the latter’s right-hand side is a symbolic variable “ ?Z ”.
After modifying the generated definitions according to Sections 4.2 and 4.3, the forward transformation of “1 +Int
1” should yield “2” with “AD;483 ↦→ (1, 1)” stored in the complements holder. The backward transformation should
use these complements to recover “1 +Int 1”. When no complements are available, it should return a default value
like “0 +Int 0” or a symbolic value like {/ |/ == 2}.

This highlights another potential improvement area: program synthesis. The default value “0 +Int 0” should
be avoided as it only equals 0, suggesting the need for symbolic defaults. However, concrete values may be
necessary at times. In such cases, an SMT solver can generate a suitable value, verified through theorem proving.
Without deep integration with formal frameworks, current BX frameworks cannot achieve this. Even advanced
bidirectional evaluation approaches like [Lubin et al. 2020; Mayer et al. 2018; Zhang et al. 2023; Zhang and
Hu 2022] do not consider program synthesis. They typically propose a BX between HTML and their custom
languages, placing placeholders (akin to KBX’s default value) in incomplete parts. Compared to KBX’s case
study, these custom languages lack concurrency semantics, so their dynamic semantics complexity is lower than
HCSP; and HTML is similar to PlantUML, differing in rendering results. This demonstrates the difficulty and
importance of incorporating expressiveness for semantics, even informal ones, into bidirectional transformations.
For example, [Zhang et al. 2023] provided informal static semantics for the object-oriented feature in bidirectional
transformation in 2023, whereas complete formal semantics of Java [Bogdanas and Roşu 2015] and JavaScript [Park
et al. 2015] were defined in K as early as 2015. These semantics can be reused in KBX for defining bidirectional
transformations of object-oriented languages.

8 CONCLUSION
We have introduced KBX, the first formal bidirectional transformation framework for verified model synchro-
nization in diverse languages and abstraction levels. Our evaluation shows that KBX outperforms other BX
frameworks while maintaining the verification ability of theK framework with consistency verification outcomes
comparable to refinement verification. Furthermore, we demonstrate the usability of KBX using a real-world
application of HCSP & UML BX. For future work, we plan to apply KBX to more expressive languages and
complicated specifications, thereby expanding its versatility and addressing more challenging scenarios.
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