
高精度数值缺陷分析

报告人：姚培森
浙江大学计算机学院-网安学院

报告日期：2022.11.27

Importance of Software Reliability

2

Program Analysis for Software Reliability

Static Analysis Dynamic Analysis

3

My Research on Program Analysis

Fundamentals

CFL-reachability
[OOPSLA’22a]

Abstract Interpretation
[OOPSLA’21]

Pointer/Heap Analysis
[PLDI21’a, TOSEM]

Sparse Analysis
[PLDI’21b]

API Misuses
[ASE’21]

Concurrency Bugs
[PLDI’21a; SEC’23]

Numerical Bugs
[ICSE’22]

Memory Safety
[S&P’20; S&P’22]

Logical Bugs
[ESEC/FSE’21; ISSTA’21]

Performance Bugs
[OOPSLA’22b]

Applications

4

Research Impact

• Found 1500+ bugs (~80 CVE) in open-source software

5

Outline

Introduction: Divide-by-Zero Bug Finding

Improve Precision via Affirmative Evidence

Improve Precision via Exists-Forall Solving

Conclusion and Future Work

6

Divide-by-Zero Bugs

How to find the divide-by-zero bug?

• Dynamic approaches
Fuzzing, AddressSanitizer, …

• Static approaches
Bug finding, formal verification

We focus on precise static bug finding
for large, real-world programs

int division(int x, int y){
return (x / y);

}

What if the divisor is zero?

7

What is Static Bug Finding?

8

Finding bugs in software without executing it

Who are Using Static Bug Finding?

9

Almost all software companies we know

”It prevents hundreds of bugs per day from entering
the Google codebase.” ---- CACM 2018

Finding Divide-by-Zero Bugs Precisely?

• Industry-strength static analyzers: >70% false positive rates
when handling large-scale programs

• Clang Static Analyzer (CSA), Infer,…

Why is the unsatisfying precision?
• Even {flow-, context-, …} sensitive analyses…

10

Outline

Introduction: Divide-by-Zero Bug Finding

Improve Precision via Affirmative Evidence [1]

Improve Precision via Exists-Forall Solving

Conclusion and Future Work

[1] Precise Divide-By-Zero Detection with Affirmative Evidence. ICSE’22
Yiyuan Guo, Jinguo Zhou, Peisen Yao, Qingkai Shi, and Charles Zhang. 11

Conventional Paradigm to Finding Bugs

The analyzer reports a divide-by-zero bug if:
The divisor variable 𝑣may be zero upon a path 𝑝

i.e., the constraint 𝒑𝒄 ∧ 𝒗 = 𝟎 is satisfiable

…

Execution path 𝑝

Path condition 𝑝𝑐

Division: 100/𝑣

When analyzing real-world programs:
!"#"$%&'()"""""""""""""""""""""""unmodelled libraries

*+, '-,.!"/01"/2-""""unmodelled semantics
3"4#56"'!(""77()

!"#"8.89:;'()"""""""""""""""analysis’s approximations

Under-constrained variables in static analysis!
12

Precision Loss due to Under-constrained Variables

The analyzer reports a divide-by-zero bug if:
The divisor variable 𝑣may be zero upon a path 𝑝

i.e., the constraint 𝒑𝒄 ∧ 𝒗 = 𝟎 is satisfiable

…

Execution path 𝑝

Path condition 𝑝𝑐

Division: 100/𝑣

Under-constrained variables can
easily make the query satisfiable!

Massive false positives!

13

Our Key Insight

• Conventional paradigm: report a bug when safety verification fails
• May not prove that 𝑝𝑐 ∧ 𝑣 = 0 is unsatisfiable
• Susceptible to under-constrained variables

• Our work: actively find affirmative evidence for triggering the bug
• Serves as extra information on the under-constrained variables
• Helps improving the precision of the analysis

14

Motivating Example

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

void foo(int dx, int dy, int d) {
int diff;
if (dx >= dy && dy >= d)

diff = 1 + dx - dy;
else

diff = -1;

print(100 / diff);

int dz = 2*dx - (dy+d);

print(100 / dx);
print(100 / dy);
print(100 / dz);

}

• Suppose the caller of the function foo is
unknown to the static analyzer

• Then the variables dx, dy, and d are
under-constrained

• Out of the four divisions, which ones should
be reported as potential divide-by-zeros?

15

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

void foo(int dx, int dy, int d) {
int diff;
if (dx >= dy && dy >= d)

diff = 1 + dx - dy;
else

diff = -1;

print(100 / diff);

int dz = 2*dx - (dy+d);

print(100 / dx);
print(100 / dy);
print(100 / dz);

}

Safe: diff is either -1 or no less than 1

Since the variables dx, dy, and d are under-
constrained, the confidence of the reports are low

Possibly buggy: dx, dy, and dz may equal
zero under all paths

Conventional methods: Lines 12-14 have bugs

Motivating Example

16

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

void foo(int dx, int dy, int d) {
int diff;
if (dx >= dy && dy >= d)

diff = 1 + dx - dy;
else

diff = -1;

print(100 / diff);

int dz = 2*dx - (dy+d);

print(100 / dx);
print(100 / dy);
print(100 / dz);

}

The programmer compares dx with dy and dy with d s

This suggests her beliefs that dx=dy and dy=d may hold.

If such beliefs hold, dz = 2*dx - (dy+d) = 0

It seems that Line 14 is more likely to trigger divide-by-zero

1

2

3

Our approach finds evidence - and only reports the bug at Line 141 3

Can we find evidence to show that some bugs
are more plausible?

Motivating Example

17

Problem Statement: Evidence-based Reasoning

In this work, we identify two categories of evidence:
1. Source evidence: an explicit source of “bad” value assigned

2. Bound evidence: likely facts produced by belief analysis

!"#"$
!"#"%&'()%*+!,-./

Direct assignment of zero

Tainted input

if (v1 >= v2) ... v1 = v2

Bound checking statement Fact that is likely to hold

18
Will focus on bound evidence in this talk

Our bug detection criteria:
1. Constraints for divide-by-zero is satisfiable: SAT(𝑝𝑐 ∧ 𝑣 = 0)
2. The discovered bound evidences can enforce 𝒗 to be zero

…

Execution path 𝑝

Path condition 𝑝𝑐

Division: 100/𝑣

Problem Statement: Evidence-based Reasoning

19

If the evidences hold, v must be zero

Approach: Path-sensitive Evidence Propagation

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

void foo(int dx, int dy, int d) {
int diff;
if (dx >= dy && dy >= d)

diff = 1 + dx - dy;
else

diff = -1;

print(100 / diff);

int dz = 2*dx - (dy+d);

print(100 / dx);
print(100 / dy);
print(100 / dz);

}

• Path-sensitivity is needed to prove diff non-zero

• Evidence propagation is needed to infer dz=0
from the bound evidence dx = dy and dy = d

Goal: Simultaneously achieve these two

20

Path-sensitive Evidence Propagation

• Efficient path-sensitive analysis:
• Data dependence graph for skipping irrelevant paths [Shi et al., PLDI’18]

• Evidence propagation:
• Source evidence: a taint analysis to mark the tainted variables
• Bound evidence: a dedicated symbolic domain Γ

• Encode bound evidence as constraints on Γ
• Constraints are enforced during iterative propagation

21

Path-sensitive Evidence Propagation

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

void foo(int dx, int dy, int d) {
int diff;
if (dx >= dy && dy >= d)

diff = 1 + dx - dy;
else

diff = -1;

print(100 / diff);

int dz = 2*dx - (dy+d);

print(100 / dx);
print(100 / dy);
print(100 / dz);

}

-1 diff

!(dx >= dy
&& dy >= d)

1+dx-dy

dx >= dy
&& dy >= d

dz 2*dx-(dy+d)
true

Augmented data dependence graph G

Initial constraints for 𝚪 extracted from G :
Γ diff = { −1,¬cond , (1 + dx − dy, cond)},

cond = dx ≥ 𝑑𝑦 ∧ 𝑑𝑦 ≥ 𝑑

Γ d𝑧 = { 2×𝑑𝑥 − 𝑑𝑦 + 𝑑 , 𝑡𝑟𝑢𝑒 }

Bound evidence: dx = dy, dy = d

22

Path-sensitive Evidence Propagation

-1 diff

!(dx >= dy
&& dy >= d)

1+dx-dy

dx >= dy
&& dy >= d

dz 2*dx-(dy+d)
true

Initial constraints for 𝚪 extracted from G :
Γ diff = { −1,¬cond , (1 + dx − dy, cond)},

cond = dx ≥ 𝑑𝑦 ∧ 𝑑𝑦 ≥ 𝑑

Γ d𝑧 = { 2×𝑑𝑥 − 𝑑𝑦 + 𝑑 , 𝑡𝑟𝑢𝑒 }

Extra constraints based on evidence:
Γ dx = Γ d𝑦
Γ d𝑦 = Γ d1

2

Resolving constraints : ⇒ 0 ∈ Γ(𝑑𝑧)

Divide-by-zero bug for the variable 𝑑𝑧

1 2

23

Evaluation: Implementation and Setup

• WIT: powered by Pinpoint@Ant Group

• Subjects: 12 open-source projects
• Popularity: > 10k stars in GitHub
• Generality: different sizes and functionalities
• At least 3.3 divisions per 1K Loc

24

Evaluation: Research Questions

• RQ1: The effectiveness of WIT
• RQ1.1: Precision improvement by evidence
• RQ1.2: Bug detection capability

• RQ2: Comparison with existing analyzers
• Clang Static Analyzer (CSA)

https://clang-analyzer.llvm.org/
• Facebook Infer

https://github.com/facebook/infer

25

https://clang-analyzer.llvm.org/
https://github.com/facebook/infer

RQ1.1: Precision Improvement by Evidence

• Comparing with an evidence agnostic variant 𝑾𝑰𝑻!
• Report divide-by-zero without considering evidence

The precision of 𝑊𝐼𝑇 (22%) greatly
outperforms 𝑊𝐼𝑇! (86%)

26

RQ1.2: Bug Detection Capability

1. Adding the criteria of evidence only misses a
small portion (12%) of bugs detected by 𝑊𝐼𝑇!

2. 𝑊𝐼𝑇 has detected 14 divide-by-zero
bugs confirmed by the developers

Missed bugs compared to𝑾𝑰𝑻! Find real bugs withWIT

27

RQ2: Comparison with Existing Analyzers

• Comparing with Clang Static Analyzer(CSA) and Infer

1. Infer and CSA have relative low recalls
and missed many bugs found by 𝑊𝐼𝑇

2. 𝑊𝐼𝑇 also has lower false positive rate
compared to Infer (64%) and CSA (55%)

𝑊𝐼𝑇 is significantly more precise and
sometimes even detects more divide-by-
zero bugs

28

Summary

• Precision issues in static detection of divide-by-zero

• Under-constrained variables causing the imprecision

• Path-sensitive affirmative evidence propagation to find
divide-by-zero bugs with high confidence

29

Outline

Introduction: Divide-by-Zero Bug Finding

Improve Precision via Affirmative Evidence

Improve Precision via Exists-Forall Solving

Conclusion and Future Work

30

Our bug detection criteria:
1. Constraints for divide-by-zero is satisfiable: SAT(𝑝𝑐 ∧ 𝑣 = 0)
2. A set of discovered evidences that can enforce 𝒗 to be zero

…

Execution path 𝑝

Path condition 𝑝𝑐

Division: 100/𝑣

Recap: The Evidence-based Numerical Analysis

What if we do not have the evidences?

31

• lib1 and lib2: unknown library functions

• The variables x and y can be regarded
as under-constrained variables

• Report a divide-by-zero bug for Line 6 ?

Path condition a*(x–y)+b>0 is satisfiable, but …

Motivating Example II

32

1 int main () {
2 int a, b = input();
3 int x = lib1(a);
4 int y = lib2(a,b);
5 if (a * (x–y) + b > 0) {
6 print(x / 0);
7 }
8 …
9 }

• Just report to developers?: might be difficult to confirm
• Generate concrete inputs?: may violate the semantics of lib1, lib2

Motivating Example II

Consider the path condition a*(x–y)+b>0

33

• lib1 and lib2: unknown library functions

• The variables x and y can be regarded
as under-constrained variables

• Report a divide-by-zero bug for Line 6 ?

1 int main () {
2 int a, b = input();
3 int x = lib1(a);
4 int y = lib2(a,b);
5 if (a * (x–y) + b > 0) {
6 print(x / 0);
7 }
8 …
9 }

Our Key Insight II

• Conventional paradigm: report a bug whenever safety verification fails,
• Prove whether 𝑝𝑐 ∧ 𝑣 = 0 is unsatisfiable
• Susceptible to under-constrained variables.

• No affirmative evidence on the under-constrained variables

• Our second work: use exists-forall solving to eliminate the effects of
the under-constrained variables

34
where Q is the set of under-constrained variables

Insight by Example

35

Solving the condition a*(x–y)+b>0 ?

The variables x and y can be regarded as
under-constrained variables

Report a divide-by-zero bug for Line 6 ?

Solving !

A“good enough” assignment is {a = 0, b = 1}

1 int main () {
2 int a, b = input();
3 int x = lib1(a);
4 int y = lib2(a,b);
5 if (a * (x–y) + b > 0) {
6 print(x / 0);
7 }
8 …
9 }

Challenge: Efficient Quantifier Reasoning

36

How to efficiently solve ?

Ongoing work…

Outline

Introduction: Divide-by-Zero Bug Finding

Improve Precision via Affirmative Evidence

Improve Precision via Exist-Forall Solving

Conclusion and Future Work

37

Conclusion

• Under-constrained variables can cause imprecision

• Two strategies for improving the precision
1. Find additional “facts” of the variables via affirmative evidence
2. Eliminate the effects of the variables via exists-forall solving

• Find numerical bugs with high confidence
• May also be easier for the developers to confirm

38

Static Bug Finding with Zero False Positive?

• A recent trend in static bug finding
• Sound(y), but high FP rates à “Actively unsound” for low FP rates

• Limitations of existing efforts
• Capability: theoretical framework vs. bug-specific technique?
• Performance: may introduce additional overhead
• Coverage: how many bugs are missed?

Group Paper Conference
Infer Incorrectness logic POPL’19
BinSec Not all bugs are created equal, but robust

reachability can tell the difference
CAV’21

Pinpoint Precise divide-by-zero detection with
affirmative evidence [1st part of this talk]

ICSE’22

39

感谢观看
rainoftime.github.io

