N CCF ChinaSoft
202 CCFrERBEAS
’ "*f\/— N RO AR MR, L E ARG D

StaEEUETRFEA DT

RSN WERR
A IR BN b

HR . 2022.11.27

Importance of Software Reliability

PayPal accidentally credits man $92 quadrillion

By Sho Wills, CNN
Updated 1355 GMT (2155 HKT) July 17, 2013

'Gangnam Style' breaks YouTube

By Brandon Griggs, CNN
® Updated 1850 GMT (0250 HKT) December 3, 2014

A new software glitch was discovered on

Boeing's 737 Max

By Chris Isidore, CNN Business
Updated 1845 GMT (0245 HKT) February 6, 2020

Program Analysis for Software Reliability 202 Ccr Fanpxe

Static Analysis Dynamic Analysis

My Research on Program Analysis 20 Ccr Fannxa

Fundamentals Applications

Process

OJEI E

— :
coHpH=l &
oo IE '
CFL-reachability Pointer/Heap Analysis Memory Safety Concurrency Bugs Logical Bugs
[OOPSLA223] [PLDI21’a, TOSEM] [S&P’20; S&P’22] [PLDI'21a; SEC'23] [ESEC/FSE’21; ISSTA21]
I
oioiol
oioiol C\OO l
-_—
. _
Abstract Interpretation Sparse Analysis Numerical Bugs API Misuses Performance Bugs
[OOPSLA21] [PLDI'21b] [ICSE’22] [ASE’21] [OOPSLA22b]

Research Impact % ccraEnpxs

* Found 1500+ bugs (~80 CVE) in open-source software

CVE-2017-14739 Leam more at National Vulnerability Database (NVD)
+ CUSS Severity Rating « Fix [nformation « \unerable Software Versicns » SCAP Nappings » C?€ Information

redis OpenSSL

Cryptography and SSUTLS Toolkit The AcquireResamplefilterThreadSet function in magick/resample-private.h in ImageMagick 7.0.7-4 mishandles failed memory allocation, which allows remote

attackers to cause a denial of service (NULL Pointer Dereference in Distortimage in MagickCore/distort.c, and application crash) via unspecfied vectors.

MySQL

"'"CVE-ZOIS 20786 Learn more at National Vulnerability Database (NVD)
Severity Rating « Fax Information « Vulnerable Scftware Versions ¢ SCAP Mappings + CPE Information

' .
\\ G D B * liyvterm through 0bar?26, & used in Vim and ether preducts, mishandles certain out-of-memery conditions, leading to a denlal of senice (applcation crash),
i related to screen.c, state.c, and vierm.c.
)) The GNU PrOJect l n s 0 screen.c, state.C, anc vierm.C.
Debugger I
&8 P ro GCt Mete:| (VE.2019-13959 Leam more at National Vulnerability Database (NVD)
Severity Rating » Fix Information Vulnerable Software Versiors « SCAP Mappings « CPE Information

WEBASSEMBLY

]

In Bentod 1.5.1-627, AP¢_Datauffer::SetDataSize does not handle reallacation failures, keading to @ memory copy into @ NULL pointer. This is different from CVE-
2018-20185.

Note: Refirences are peovided for the convenience of the reader to hel cistinguish between vulerablities. The lst is not intended to be complete.

o MISC:hitps: //github.com/axiomatic-systems/Bentodi

CCF ChinaSoft

Outline 0% CcErERE XS

Introduction: Divide-by-Zero Bug Finding

Improve Precision via Affirmative Evidence

Improve Precision via Exists-Forall Solving

Conclusion and Future Work

Divide-by-Zero Bugs %% ccrrERa xR

int division(int x, int y) { How to find the divide-by-zero bug?

return (x / y): « Dynamic approaches

Fuzzing, AddressSanitizer, ...

J

« Static approaches
Bug finding, formal verification

We focus on precise static bug finding
for large, real-world programs

T What if the divisor is zero? %

CCF Chin

What is Static Bug Finding? 202 ccFrERA xR

Finding bugs in software without executing it

m '.:- CODACY larQul @) coverity’
ION'T SHOOT THE MESS

FindBugs PMD Codacy SonarQube ~ Coveri Cpp check PVS-Studio

@.— E 'mwuppltlmle

Clang RIPS CodeRush Polyspace Cppdepend Helix QAC Semmle

Who are Using Static Bug Finding?

Almost all software companies we know

SYNOPSYS V2 Huawel
HE g~ :
Mi!osoft J Bal.éb.'ﬁl'g" @Ilbaba

"It prevents hundreds of bugs per day from entering
the Google codebase.” ---- CACM 2018

Q)

Finding Divide-by-Zero Bugs Precisely? 20 CcrFannxe

* Industry-strength static analyzers: >70% false positive rates
when handling large-scale programs

» Clang Static Analyzer (CSA), Infer,...

SOFTWARE SIZE (MILLION LINES OF CODE)

Hubble Space Telescope

Why is the unsatisfying precision?

« Even {flow-, context-, ...} sensitive analyses...
10

CCF ChinaSoft

Outline %02 CcF ammn x 2

Introduction: Divide-by-Zero Bug Finding

s | Mprove Precision via Affirmative Evidence [1]

Improve Precision via Exists-Forall Solving

= Conclusion and Future Work

[1] Precise Divide-By-Zero Detection with Affirmative Evidence. ICSE'22
Yiyuan Guo, Jinguo Zhou, Peisen Yao, Qingkai Shi, and Charles Zhang. 11

Conventional Paradigm to Finding Bugs 202 cr Fanexe

The analyzer reports a divide-by-zero bug if:
The divisor variable v may be zero upon a path p
l.e., the constraint pc A v = 0 is satisfiable

When analyzing real-world programs:

v = lib(); unmodelled libraries

Path condition pc
asm ("mov %1, %0" unmodelled semantics

2= (v) L),

Division: 100 /v v = nondet(); analysis’s approximations

o

Execution path p

Under-constrained variables in static analysis! .

Precision Loss due to Under-constrained Variables %% ccr#axex2

The analyzer reports a divide-by-zero bug if:
The divisor variable v may be zero upon a path p
i.e., the constraint|pc A v = 0)is satisfiable

Path condition pc Under-constrained variables can
easily make the query satisfiable!

o

Execution path p

Division: 100/v Massive false positives!

13

Our Key Insight 20 ccrmnnxe

« Conventional paradigm: report a bug when safety verification fails

« May not prove that pc A v = 0 is unsatisfiable
» Susceptible to under-constrained variables

o0
N\

* Our work: actively find affirmative evidence for triggering the bug

* Serves as extra information on the under-constrained variables
« Helps improving the precision of the analysis

14

Motivating Example 0% ccrwmnnx2

1void foo(int dx, int dy, int d) {
int diff;

2 . .
3 if (dx = dy & dy >= d) * Suppose the caller qf the function foo is

A diff =1 + dx - dy: unknown to the static analyzer

5) else

? diff = -1; Then the variables dx, dy, and d are

8 print (100 / diff): under-constrained

9

10 int dz = 2%dx — (dy+d): * Qut of the four divisions, which ones should
11

S ?
12 print (100 / dx) : be reported as potential divide-by-zeros”

13 print (100 / dy):
14 print (100 / dz) ;

15

Motivating Example %02 ccrrERA RS

1void foo(int dx, int dy, int d) {
int diff;
if (dx >= dy && dy >= d)

diff = 1 + dx — dy; E

2
3
4
5] else
6
7
8

diff = -1, e
; print (100 / diff); Conventional methods: Lines 12-14 have bugs
10 int dz = 2%dx — (dy+d); Since the variables dx, dy, and d are under-
11 constrained, the confidence of the reports are low

12 print (100 / dx) ;
13 print (100 / dy) it

14 print (100 / dz) ; i Possibly buggy: dx, dy, and dz may equal :
15] . zero under all paths X '

16

CCF ChinaSoft

Motivating Example 202 ccFrERA xR

Can we find evidence to show that some bugs

2 int diff;
3 if (dx >= dy && dy >= d) F:I:f-1-“--““---““-““--““--““--““““-“"““"““":

. The programmer compares dx with dy and dy withd !
4 diff =1 + dx - dy; @ R F_)___g________________p_ _______)E ________ 3_7_______}[____________'
5 else
6 dlff - _]., T T T TS mmTT T m T mm e !
7 (2) | This suggests her beliefs that dx=dy and dy=d may hold. :
8 print (100 / diff);
S
10 |int dz = 2*dx - (dy+d); OF | If such beliefs hold, dz = 2sdx ~ (dy+d) = 0
5 e '
12 print (100 / dx): e
13 print (100 / dy) ; ' It seems that Line 14 is more likely to trigger divide-by-zero !
14 print (100 / dz): | = fTTTTTTTTTTToTTommommommommoomoomoomoomoomoomoooooooooooooooooooooes !
15}

Our approach finds evidence@- @and only reports the bug at Line 14
17

CCF ChinaSoft

Problem Statement: Evidence-based Reasoning %% ccrwanexs

In this work, we identify two categories of evidence:
1. Source evidence: an explicit source of “bad” value assigned

v=0 Direct assignment of zero

v = atoi(argv[1]) Tainted input

2. Bound evidence: likely facts produced by belief analysis

if (vl >= v2) ... ‘ vl = v2

Bound checking statement Fact that is likely to hold

Will focus on bound evidence in this talk 8

Problem Statement: Evidence-based Reasoning %% ccrwanexs

Our bug detection criteria:
1. Constraints for divide-by-zero is satisfiable: SAT(pc A v = 0)
2. The discovered bound evidences can enforce v to be zero

Path condition pc

If the evidences hold, v must be zero

© Division: 100/v

Execution path p

19

CCF ChinaSoft

Approach: Path-sensitive Evidence Propagation %2 ccrazsxe2

1void foo(int dx, int dy, int d) {

2 int diff;

3 if (dx >= dy && dy >= d) e .

A diff =1 + dx - dy: » Path-sensitivity is needed to prove diff non-zero
5) else

6 diff = —1;

7

3 print (100 / diff) Evidence propagation is needed to infer dz=0
9 from the bound evidence dx = dy and dy = d
10 int dz = 2%dx — (dy+d):

11

12 print (100 / dx);

13 print (100 / dy); Goal: Simultaneously achieve these two
14 print (100 / dz);:

15}

20

Path-sensitive Evidence Propagation 202 Ccr Fanpxe

» Efficient path-sensitive analysis:
« Data dependence graph for skipping irrelevant paths [Shi et al., PLDI'18]

» Evidence propagation:
» Source evidence: a taint analysis to mark the tainted variables

« Bound evidence: a dedicated symbolic domain I’
* Encode bound evidence as constraints on I
« Constraints are enforced during iterative propagation

21

Path-sensitive Evidence Propagation 202 Ccr Fanpxe

 (dx >= dy dx >= dy

. . . . && dy >= d) && dy >= d
1V01d.foo(}nt dx, int dy, int d) { @ diff @
2 int diff; U
3 if (dx >= dy && dy >= d)
4 dlff —]. + dX - dy, true
5 else dz) 2%dx— (dy+d)
6 diff = -1;
7
3 brint (100 / diff): Augmented data dependence graph G
9
10 int dz = 2%dx - (dy+d); Initial constraints for I' extracted from G :
11 I'(diff) = {(—1, =~cond), (1 + dx — dy, cond)},
12 print (100 / dx): cond=dx=>dyAdy >d
13 print (100 / dy):
14 print (100 / dz) I'(dz) = {(2xdx — (dy + d), true)}
15 }

Bound evidence: dx = dy, dy = d
22

Path-sensitive Evidence Propagation 202 Ccr wEnR Az

| (dx >= dy dx >= dy

&& dy >= d) //’—\\\ && dy >= d
true
<:§{:} 2%dx— (dy+d)

Initial constraints for I' extracted from G : Extra constraints based on evidence:
I'(diff) = {(—1, =~cond), (1 + dx — dy, cond)}, @ I'(dx) = I'(dy)
@ cond=dx >dyAdy >d I'(dy) = I'(d)

I'(dz) = {(2xdx — (dy + d), true)}

Resolving constraints (1) (2) : = 0 €TI'(dz)

Divide-by-zero bug for the variable dz
23

Evaluation: Implementation and Setup %o Ccrimnnxs

e WIT-: powe red by Pin po| nt@Ant Grou o) Table 2: Selected projects for evaluation.

Project Loc #Div/KLoC
%M% 2 masscan 34k 5.4
ANT GROUP oaccess 53k 1.1
PINPOINT & '
libuv 59k 0.8
redis 131k 5.0
« Subjects: 12 open-source projects Bt 226k o
« Popularity: > 10k stars in GitHub ImageMagick 382k 6.6
. . . . ‘yn | 465k 4.1
« Generality: different sizes and functionalities openes
o systemd 600k 5.0
» At least 3.3 divisions per 1K Loc php 1,012k 1.3
gdb 1,932k 1.6
Linux kernel 15,164k 2.1

24

Evaluation: Research Questions 202 ccFrEnn 2

o RQ1 The effectiveness of WIT Table 2: Selected projects for evaluation.
* RQ1.1: Precision improvement by evidence

. - Project Loc #Div/KLoC
 RQ1.2: Bug detection capability masscan 34k 5 4
goaccess 53k 1.1
libuv 59k 0.8
. . . = redis 131k 5.0
* RQ2: Comparison with existing analyzers it ek is
» Clang Static Analyzer (CSA) vim 354k 18
_ ImageMagick 382k 6.6
https://clang-analyzer.llvm.org/ openss] 465Kk 41
« Facebook Infer S{lstemd ?Ooollék ig
https.//github.com/facebook/infer ‘g’dﬁ 1,932k 16
Linux kernel 15,164k 2.1

25

https://clang-analyzer.llvm.org/
https://github.com/facebook/infer

CCF ChinaSoft

RQ1.1: Precision Improvement by Evidence %% ccreanrx=

« Comparing with an evidence agnostic variant WIT™
* Report divide-by-zero without considering evidence

Table 3: Divide-by-zero detection on real-world projects.
WIT™ represents a variant of WIT unaware of evidence.

Project # of reports FP rate Analysis time
Wit Wirm Wit Wir Wit Wit~
masscan 3 10 30% 80% 4m2ds 6m The precision of WIT (22%) greatly
oaccess 2 15 0 80% 1Im38s Im33s —
ibuy L s 0 e mms mss outperforms WIT~ (86%)
redis 1 20 0 95% 23m12s 23m9s
git 10 29 40% 79% 38m3s 34m34s
vim 1 32 25% 88% 109m55s 109m12s
ImageMagick 5 47 20% 89% 196m39s 189m10s
openssl 2 18 0 89% 31m55s 31m48s
systemd 5 20 60% 90% 202m38s 183m21s
php 4 17 50% 88% 104m38s 94m21s
gdb 5 213 20% 96% 248m28s 299mls
Linux kernel 53 2839 19% NA 425m35s 452m12s

26

RQ1.2: Bug Detection Capability 20 Ccr Fannxa

Missed bugs compared to WIT~ Find real bugs with WIT

Table 4: Distribution of true positives reported by Wit (the
column “Total”) into Class Src and Class Bd. The column
“Missed” shows the number of true positives reported by

Table 5: Divide-by-zero bugs confirmed by developers.

WIT™ but missed by Wrr. git Linux gdb Image goaccess libuv openssl vim systemd
Magick
1 4 1 2 2 1 1 1 1

Project Total Src¢ Bd Missed

masscan 2 2 O 0 From: Yiyue'\n-GUO @- 2021-05-14 9:16 UTC (permalink / raw)
To: hare; +Cc: axboe, linux-block, yguoaz, Yiyuan GUO
goaccess 2 2 0 1 In function blk mg map_gueues, gmap->nr_gueues may equal zero
. and thus it needs to be checked before we pass it to function
llbuv 1 0 1 O queue_index.
re(iis 1 1 0 O Signed-off-by: Yiyuan GUO <yguoaz@cse.ust.hk>
. _;Iock/blk—mq—cpumap.c | 3 ++-
glt 6 4 2 O 1 file changed, 2 insertions(+), 1 deletion(-)
VjIIl 3 1 2 1 diff --git a/block/blk-mg-cpumap.c b/block/blk-mg-cpumap.c
. index 3db84d319..dc440870e 100644
ImageMagle 4 3 2 1 —--- a/block/blk-mg-cpumap.c
+++ b/block/blk-mg-cpumap.c
@@ -65,7 +65,8 @@ int blk mg map_queues(struct blk mg gueue_map *gmap)
openssl 2 1 1 0 Sy
first_sibling = get_first_ sibling(cpu);
systemd 2 1 1 0 if (first sibling == cpu) ’
- map[cpu] = queue_index(gmap, nr_gueues, g++);
Fﬂﬁ[) 2 0 2 O i if (nr_gqueues)
+ map[cpu] = queue_index(gmap, nr_gqueues, g++);
else
gdb 4 3 1 4 map[cpu] = map[first_sibling];
. }
Linux kernel 43 36 10 NA —

2.25.1

1. Adding the criteria of evidence only misses a 2. WIT has detected 14 divide-by-zero
small portion (12%) of bugs detected by WIT~ bugs confirmed by the developers 27

RQ2: Comparison with Existing Analyzers = %% c#ansxs

« Comparing with Clang Static Analyzer(CSA) and Infer

Table 7: Divide-by-zero detection results for Infer and CSA.
NA denotes the false positive rate when no bug is reported.

of reports FP rate Analysis time

Project Infer CSA Infer CSA Infer CSA 1. Infer and CSA have relative low recalls
masscan 0 0 NA NA 1mds 4mSs and missed many bugs found by WIT
goaccess 1 0 0 NA 3m27s 10m59s

libuv 0 0 NA NA 3mil3s 4m47s "

redis A L s0n 0 8sm47s 15m37s 2. WIT also has lower false positive rate
git 7 0 100% NA 8m55s 15min5s compared to Infer (64%) and CSA (55%)
vim 0 2 NA 50% 24m21s 17m47s

ImageMagick 7 2 71% 100% 16m7s 25m24s . . L .

openssl 0 1 NA 0 49m2s 9m43s WIT is significantly more precise and
systemd ! 0 100% NA 31m2ls 11m45s sometimes even detects more divide-by-
php 0 2 NA 100% 20m23s 57m28s b

gdb 0 6 NA 83% 41m59s 81ml7s Z€ro bugs

Linux kernel ~ Crash 63 Crash 51% Crash 281m4s

28

Summary

 Precision issues in static detection of divide-by-zero

» Under-constrained variables causing the imprecision

« Path-sensitive affirmative evidence propagation to find
divide-by-zero bugs with high confidence

29

CCF ChinaSoft

Outline %02 CcF ammn x 2

Introduction: Divide-by-Zero Bug Finding

Improve Precision via Affirmative Evidence

Improve Precision via Exists-Forall Solving

Conclusion and Future Work

30

Our bug detection criteria:
1. Constraints for divide-by-zero is satisfiable: SAT(pc Av =0)
2. A set of discovered evidences that can enforce v to be zero

Path condition pc What if we do not have the evidences? =

© Division: 100/v

Execution path p

31

Motivating Example |l %02 ccrrERAx2

1 int main () { lib1 and lib2: unknown library functions

2 int a, b = input();

3 int x = libl(a); « The variables x and y can be regarded
4 int y = lib2(a, b); as under-constrained variables

5 if (a*x (x-y) +b > 0) {

g } print(x / 0); Report a divide-by-zero bug for Line 6 ?
8 coe

9 }

Path condition a* (x - y) +b>0 is satisfiable, but ...

32

Motivating Example |l %02 ccrrERAx2

1 int main () { lib1 and lib2: unknown library functions

2 int a, b = input();

3 int x = libl(a); « The variables x and y can be regarded
4 int y = lib2(a, b); as under-constrained variables

5 if (a*x (x-y) +b>0) {

g } print(x / 0); Report a divide-by-zero bug for Line 6 ?
8 coe

9 }

Consider the path condition a* (x - y) +b>0

« Justreport to developers?. might be difficult to confirm
« Generate concrete inputs?. may violate the semantics of lib1, lib2

33

Our Key Insight I 0% ccrwmnnxe

« Conventional paradigm: report a bug whenever safety verification fails,

* Prove whether pc A v = 0 is unsatisfiable
» Susceptible to under-constrained variables.

o0
N

* No affirmative evidence on the |under-constrained variables | =

* Our second work: use exists-forall sgiving to eliminate the effects of
the under-constrained variables

dP.VYO'. ¢(P, Q)

where Q is the set of under-constrained variables .

Insight by Example 0% ccrwmnnx2

int main () { The variables x and y can be regarded as
int a, b = input(); under-constrained variables
int x = libl(a);
int y = lib2(a, b) ; Report a divide-by-zero bug for Line 6 ?

if (a* (x-y) +b>0) {

print(x / 0):
}

O 0 ~J O O1 v LW DN —

Solving the condition a*(x - y) +b>0 ?

Solving da,b.Vx,y.a*(x—y)+b> 0!

A "good enough” assignment is {a =0, b = 1} 35

Challenge: Efficient Quantifier Reasoning

How to efficiently solve P.VQ . ¢(P,Q)?

More
Uninterpreted
Functions
(UF)

ATP SMT Solvers
(Vampire, E, iProver, SPASS, ...) (CVC4, 73, Yices, Boolector, veriT, ...)
v
< ee—)

More Theories (LIA, BY, ...)

Ongoing work... .

CCF ChinaSoft

Outline 0% CcErERE XS

Introduction: Divide-by-Zero Bug Finding

Improve Precision via Affirmative Evidence

Improve Precision via Exist-Forall Solving

Conclusion and Future Work

37

Conclusion 202 (CFrEnaxe

« Under-constrained variables can cause imprecision

« Two strategies for improving the precision
1. Find additional “facts” of the variables via affirmative evidence
2. Eliminate the effects of the variables via exists-forall solving

* Find numerical bugs with high confidence
* May also be easier for the developers to confirm

38

Static Bug Finding with Zero False Positive? %% ccrianrxs

* Arecent trend in static bug finding
« Sound(y), but high FP rates - “Actively unsound” for low FP rates

__Group | Paper | Conference_

Infer Incorrectness logic POPL'19

BinSec Not all bugs are created equal, but robust CAV’'21
reachability can tell the difference

Pinpoint Precise divide-by-zero detection with ICSE’22

affirmative evidence [1°' part of this talk]

* Limitations of existing efforts
« Capability: theoretical framework vs. bug-specific technique?
« Performance: may introduce additional overhead
« Coverage: how many bugs are missed? 39

- AN CCF ChinaSoft

> CCFPERBAS

/
>“*\/, =\ LA NS LU R AT RN R F S s Oy

%157 XN

rainoftime.github.io

