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Data Dependence Analysis

Answer the def-use related queries N def use
X =
Does the value of a rely on the value of b? y=fx) |'x=b a="y
a="%y
e Problem Statement - 5

High Precision High Efficiency High Scalability

Build inter-procedural path- Analyze millions of lines Analyze millions of linesi
sensitive value-flow graph of code within 2 hours of code within 64 GB

________________________________________________________________________________________________________________________



Challenge: Aliasing-Path-Explosion Problem

 Assignments to and from indirect memory locations complicate path
conditions by the disjunction of the conditions of assignment value, points-
to, and statement location in the Cartesian Product manner.

P1 P2 ! P4
PTS(p)={gi:0, 0220} % & % & PIS(9)=(p;:05,0,:0,)

og:'p =4

[o]1X [, @, 1X1 @3 @51

Path conditions with massive redundancy !!



Existing Works

Neither of existing approaches scale to millions of lines of code.

/
ﬂ? Bootstrapped Approach

Use caching, pruning, simplification, and
searching heuristics to speedup SAT solving

Still too many SAT queries and results are
represented in a dense manner

Layered Approach

Sparse analysis such as SVF

Enable sparse path-sensitive analysis with
pre-computed path-insensitive results

Introduce too many spurious value-flow
paths and hurt performance and scalability



Inline Points-to Sets and

FalCOIl Key DeSign oInstantiate Symbolic Objects

On-the-Fly Sparse and Semi-Path

E Sensitive Intra-procedural analysis
. g =(+

M)

+ 0,
Qo print(*f)
Program Sparse Points- Sparse VFG (SEG) with
to Sets Symbolic Objects [PLPI'18]
®

On-demand Context-
Ep (4] sensitive Data € Formal/actual matching
Dependence Searching N for SEGs
(== . N <
Client
Applications Stitched SEGs
(Similar to exploded super graph in IFDS)




Intra-procedural Analysis

Sparse value-flow graph construction and pointer
analysis performed together

A memory location defined at a program point [ can
Key Idea . .
only be used at program points dominated by [

S{’3(allocm) - { (true, £37 C) } S&‘(allocm)
S,{’At(allocm) — { (QD, '849 d) } S€3(allocm) S33(211100111)

On-the-Fly sparsity

dominator tree

Dominance
W Frontiers
tg: f=*x _ Query value Query value
Store Mapping@I6 of m@16? of m@I5?
7
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Intra-procedural Analysis

70% constraints are satisfiable

Semi-path-sensitive e .
P 90% Of unsatisfiable constraints are easy to solve

Semi-Decision Procedure

Key Idea * Solve easy constraints that can be determined UNSAT in linear time
* Boolean abstraction + Semi- decision procedure

Programs #SAT Queries #UNSAT (All) #UNSAT (Easy)
transmission 26996 6926 (25.7%) 6696 (96.7%)
rats 23897 8297 (34.7%) 8264 (99.6%)

curl 12957 4528 (34.9%) 4463 (98.6%)




Inter-procedural Analysis

* Inline the callee’s side-effects of the points-to structure into the caller
* Mark the aliased symbolic objects at the call sites

Use Symbolic Object (SO) for memory locations
accessed by pointers of the formal parameters.

bar(p) 1 * A way for implementing storeless memory model.
*p = 2; @—' 50,
}
 Mark the symbolic objects SO, and SO, aliased at

foo(q) { the call site L to stitch the SEGs of foo and bar.

g = 1
, E ( )’  C(Create a def of SO, after the call site L and

: bar(q);
SO erform the store rule.
Z = 7'<q; ®_' 2 p




On-demand Context-Sensitive Searching

[Queryl Which variable does x depend on?

Points-to Edge

foo(p, a) { bar(u, v) { qux(e) {
bar(p, q); w = qux(v); return e: [Answer] x depends on ¢
L: X = p->n; Uu->n = Ww; 3
} } bar(p, q);
foo bar qux
T T T T T T T L l AR W Tqux(v); T |
I I ' : I @ I
| |
Dependence Edge : %)) @ : : %D @ : : :
! \ bar(p, a);, ! : !
I 501 ! : SOZ : | [
Aliasing Edge : X = p->n : l : : :
! ' bar(p, );, ! !
! SO1.n : | s0,.n | ::
|
: | | | !
I : :
: - '

- e o o o o o o o o Em = = - o o o e e e e e o= o= ol



Evaluation Setup

* Implementation

* Build on top of LLVM and Z3 SMT solver
* Support most C/C++ features such as unions, arrays, and classes

e Environment
* 64-bit machine with 40 CPUs@2.20 GHz and 256 GB RAM

* Experiments
* Value-flow graph construction
* Thin slicing for program understanding
* Use-after-free bug detection
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Benchmarks

Open-source
Projects

SPEC
CINT2000

firefox

rethinkdb

mysql |

ppsspp )

ffmpeg [T
php [T

libicu T
wrk [T
vim [

git @
gee @

perlbmk [J
vortex ]
gap 1|

eon |

crafty |

1000

2000

2.1M

Lines of Code (KLoC)

3000

3.7M

4000

5000

6000

7000

7.9M

8000

9000
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Evaluating Value-flow Graph Construction

e Goal

« Examine efficiency and scalability of Falcon for constructing value-flow graphs

* Setting

e (Cutoff time is 12 hours

Flow Sensitivity S:r(\):i:?\i(ity Exhaustive
SVF [CC'16] X X 4
SFS [CGO'10] X v
SUPA-FS [FSE'16] v X X
SUPA-FSCS [FSE'16] v v X
DSA [PLDI'07] X v v
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Evaluating Value-flow Graph Construction

Falcon is More Scalable
 Time: 17%, 25%, 4.4x faster than SVF, SFS, DSA

 Memory: 1.4x, 1.9%, 4.2x less memory than SVF, SFS, DSA

—SVF SFS DSA —Falcon —SVF SFS DSA —Falcon
700 200
600
€400 0
§—300 f 100
£ £
£200
= g 50

102 /\v - 0 /\A

1 2 3 4 5 6 7 8 9 10 11 12 13 1 2 3 4 5 6 7 8 9 10 11 12 13

* SUPA-FS and SUPA-FSCS only finished analyzing crafty and econ
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Evaluating Thin Slicing

e Goal

* Measure efficiency and precision of semi-path-sensitive value-flow graphs

* Setting
* Exclude time for building value-flow graphs
 Slicing queries are derived from realistic third-party typestate analysis

* Compare to the same tools as in before

15



Evaluating Thin Slicing

Falcon is More Efficient and Precise on the premise of Soundiness
 Efficiency: up to 302x faster than SUPA-FSCS and 54x on average
* Precision: produce 5.5%, 1.9%, 2.6%, 1.3x smaller slices than SVF, SFS, DSA,

SUPA-FSCS
B SVF SFS DSA B Falcon SUPA-FSCS
7
6
()]
.UE,S
(7,]
%3
S I
0 il | | ‘ | | ‘
AR BEE I FIEE A BOR BEAR A OEE AR AR BEelE 1
1 2 3 4 5 6 7 8 9 10 11 12 13
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Evaluating Use-after-free detection

e Goal

» Investigate efficiency and effectiveness of Falcon for value-flow bug finding

* Setting

* 15-second time limit for each SMT query

* Run in single-thread mode with a cutoff time of 24 hours

CRED [ICSE'18]

(Layered) Pointer Analysis

Path Sensitivity

Full Path Sensitivity

Clang Static Analyzer (with Z3)

(Bootstrapped) Symbolic Executor

Full Path Sensitivity

Falcon (with Pinpoint)

(Fused) Data Dependence Analysis

Full Path Sensitivity
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Evaluating Use-after-free detection

Falcon is More Efficient with Lower False Positive
 Efficiency: 10.3%, 1620.8x faster than CRED and CSA
e False Positive: 40.0%, 33.3%, 27.8% for CRED, CSA, Falcon
* Align with the common industrial requirement of 30% false positives

CRED —CSA —Falcon OFalse Positive @ True Positive
1600

1400

1200 CRED Falcon

RAVIATNG Y° Yo

1 2 3 4 5 6 7 10 11 12 13 14 15 16

o

Time (min)
o

o

40.0% 33.3% 27.8%
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Conclusion

o On-the-fly sparse

e Semi-path-sensitive

e On-demand searching

Q&A



