alcon

A Fused Approach to Path-Sensitive Sparse Data
Dependence Analysis

Peisen Yao, Zhejiang University
Jinguo Zhou, Ant Group
Xiao Xiao*, Ant Group (Presenter)

Qingkai Shi, Nanjing University
Rongxin Wu, Xiamen University
Charles Zhang, HKUST

A History of CODA Project

2018

—

Pinpoint [PLDI'18]

Holistic Value Flow Analysis

Dyck Indexing [OOPSLA’22]
Extended Dyck-CFL Reachability

2020
*

Catapult [ICSE’20]

Extensional Scalability

Memory Leak Detection
—1

—0

Coyote [ICSE’20]
Pipelining

Trident [ISSTA’20]
Bit-Vector Satisfiability

2021

l—9

—

Canary [PLDI'21]
Inter-Thread Value-Flow Analysis

Fusion [PLDI'21]
Sparse Analysis without Path Conditions

Transcode [ASE’21]

Specification Inference

| o —o T e
Cres [OOPSLA’22] Coral [OOPSLA"23] " DAInfer [FSE’24]
Container Synthesis _C.all Graph Construction Infer Alias Spec via LLM

—* . e, —e —
Wlt [ICSE’ZZ] LOCkple [USENIX Securlty 23] OCtOpllS [TOSEM’24] Current Paper [PLDI,24]
Divide-By-Zero Detection _L.OCk Misuse Bug Parallel Value-Flow Analysis | Data Dependence Analysis

— p—g —0
Peahen [ICSE’22] Anchor [TOSEM"23] Cod [ISSTA’24] LibAlchemy [ICSE’24]
Deadlock Detection Container Value-Flow Analysis Buffer Overflow Bug Finding| Static Analysis with Persistence

2022

2023

2024

Data Dependence Analysis

Answer the def-use related queries N def use
X =
Does the value of a rely on the value of b? y=fx) |'x=b a="y
a="%y
e Problem Statement - 5

High Precision High Efficiency High Scalability

Build inter-procedural path- Analyze millions of lines Analyze millions of linesi
sensitive value-flow graph of code within 2 hours of code within 64 GB

__

Challenge: Aliasing-Path-Explosion Problem

 Assignments to and from indirect memory locations complicate path
conditions by the disjunction of the conditions of assignment value, points-
to, and statement location in the Cartesian Product manner.

P1 P2 ! P4
PTS(p)={gi:0, 0220} % & % & PIS(9)=(p;:05,0,:0,)

og:'p =4

[o]1X [, @, 1X1 @3 @51

Path conditions with massive redundancy !!

Existing Works

Neither of existing approaches scale to millions of lines of code.

/
ﬂ? Bootstrapped Approach

Use caching, pruning, simplification, and
searching heuristics to speedup SAT solving

Still too many SAT queries and results are
represented in a dense manner

Layered Approach

Sparse analysis such as SVF

Enable sparse path-sensitive analysis with
pre-computed path-insensitive results

Introduce too many spurious value-flow
paths and hurt performance and scalability

Inline Points-to Sets and

FalCOIl Key DeSign oInstantiate Symbolic Objects

On-the-Fly Sparse and Semi-Path

E Sensitive Intra-procedural analysis
. g =(+

M)

+ 0,
Qo print(*f)
Program Sparse Points- Sparse VFG (SEG) with
to Sets Symbolic Objects [PLPI'18]
®

On-demand Context-
Ep (4] sensitive Data € Formal/actual matching
Dependence Searching N for SEGs
(== . N <
Client
Applications Stitched SEGs
(Similar to exploded super graph in IFDS)

Intra-procedural Analysis

Sparse value-flow graph construction and pointer
analysis performed together

A memory location defined at a program point [can
Key Idea . .
only be used at program points dominated by [

S{’3(allocm) - { (true, £37 C) } S&‘(allocm)
S,{’At(allocm) — { (QD, '849 d) } S€3(allocm) S33(211100111)

On-the-Fly sparsity

dominator tree

Dominance
W Frontiers
tg: f=*x _ Query value Query value
Store Mapping@I6 of m@16? of m@I5?
7

l Walk up the l

Intra-procedural Analysis

70% constraints are satisfiable

Semi-path-sensitive e .
P 90% Of unsatisfiable constraints are easy to solve

Semi-Decision Procedure

Key Idea * Solve easy constraints that can be determined UNSAT in linear time
* Boolean abstraction + Semi- decision procedure

Programs #SAT Queries #UNSAT (All) #UNSAT (Easy)
transmission 26996 6926 (25.7%) 6696 (96.7%)
rats 23897 8297 (34.7%) 8264 (99.6%)

curl 12957 4528 (34.9%) 4463 (98.6%)

Inter-procedural Analysis

* Inline the callee’s side-effects of the points-to structure into the caller
* Mark the aliased symbolic objects at the call sites

Use Symbolic Object (SO) for memory locations
accessed by pointers of the formal parameters.

bar(p) 1 * A way for implementing storeless memory model.
*p = 2; @—' 50,
}
 Mark the symbolic objects SO, and SO, aliased at

foo(q) { the call site L to stitch the SEGs of foo and bar.

g = 1
, E ()’ C(Create a def of SO, after the call site L and

: bar(q);
SO erform the store rule.
Z = 7'<q; ®_' 2 p

On-demand Context-Sensitive Searching

[Queryl Which variable does x depend on?

Points-to Edge

foo(p, a) { bar(u, v) { qux(e) {
bar(p, q); w = qux(v); return e: [Answer] x depends on ¢
L: X = p->n; Uu->n = Ww; 3
} } bar(p, q);
foo bar qux
T T T T T T T L l AR W Tqux(v); T |
I I ' : I @ I
| |
Dependence Edge : %)) @ : : %D @ : : :
! \ bar(p, a);, ! : !
I 501 ! : SOZ : | [
Aliasing Edge : X = p->n : l : : :
! ' bar(p,);, ! !
! SO1.n : | s0,.n | ::
|
: | | | !
I : :
: - '

- e o o o o o o o o Em = = - o o o e e e e e o= o= ol

Evaluation Setup

* Implementation

* Build on top of LLVM and Z3 SMT solver
* Support most C/C++ features such as unions, arrays, and classes

e Environment
* 64-bit machine with 40 CPUs@2.20 GHz and 256 GB RAM

* Experiments
* Value-flow graph construction
* Thin slicing for program understanding
* Use-after-free bug detection

11

Benchmarks

Open-source
Projects

SPEC
CINT2000

firefox

rethinkdb

mysql |

ppsspp)

ffmpeg [T
php [T

libicu T
wrk [T
vim [

git @
gee @

perlbmk [J
vortex]
gap 1|

eon |

crafty |

1000

2000

2.1M

Lines of Code (KLoC)

3000

3.7M

4000

5000

6000

7000

7.9M

8000

9000

12

Evaluating Value-flow Graph Construction

e Goal

« Examine efficiency and scalability of Falcon for constructing value-flow graphs

* Setting

e (Cutoff time is 12 hours

Flow Sensitivity S:r(\):i:?\i(ity Exhaustive
SVF [CC'16] X X 4
SFS [CGO'10] X v
SUPA-FS [FSE'16] v X X
SUPA-FSCS [FSE'16] v v X
DSA [PLDI'07] X v v

13

Evaluating Value-flow Graph Construction

Falcon is More Scalable
 Time: 17%, 25%, 4.4x faster than SVF, SFS, DSA

 Memory: 1.4x, 1.9%, 4.2x less memory than SVF, SFS, DSA

—SVF SFS DSA —Falcon —SVF SFS DSA —Falcon
700 200
600
€400 0
§—300 f 100
£ £
£200
= g 50

102 /\v - 0 /\A

1 2 3 4 5 6 7 8 9 10 11 12 13 1 2 3 4 5 6 7 8 9 10 11 12 13

* SUPA-FS and SUPA-FSCS only finished analyzing crafty and econ

14

Evaluating Thin Slicing

e Goal

* Measure efficiency and precision of semi-path-sensitive value-flow graphs

* Setting
* Exclude time for building value-flow graphs
 Slicing queries are derived from realistic third-party typestate analysis

* Compare to the same tools as in before

15

Evaluating Thin Slicing

Falcon is More Efficient and Precise on the premise of Soundiness
 Efficiency: up to 302x faster than SUPA-FSCS and 54x on average
* Precision: produce 5.5%, 1.9%, 2.6%, 1.3x smaller slices than SVF, SFS, DSA,

SUPA-FSCS
B SVF SFS DSA B Falcon SUPA-FSCS
7
6
()]
.UE,S
(7,]
%3
S I
0 il | | ‘ | | ‘
AR BEE I FIEE A BOR BEAR A OEE AR AR BEelE 1
1 2 3 4 5 6 7 8 9 10 11 12 13
16

Evaluating Use-after-free detection

e Goal

» Investigate efficiency and effectiveness of Falcon for value-flow bug finding

* Setting

* 15-second time limit for each SMT query

* Run in single-thread mode with a cutoff time of 24 hours

CRED [ICSE'18]

(Layered) Pointer Analysis

Path Sensitivity

Full Path Sensitivity

Clang Static Analyzer (with Z3)

(Bootstrapped) Symbolic Executor

Full Path Sensitivity

Falcon (with Pinpoint)

(Fused) Data Dependence Analysis

Full Path Sensitivity

17

Evaluating Use-after-free detection

Falcon is More Efficient with Lower False Positive
 Efficiency: 10.3%, 1620.8x faster than CRED and CSA
e False Positive: 40.0%, 33.3%, 27.8% for CRED, CSA, Falcon
* Align with the common industrial requirement of 30% false positives

CRED —CSA —Falcon OFalse Positive @ True Positive
1600

1400

1200 CRED Falcon

RAVIATNG Y° Yo

1 2 3 4 5 6 7 10 11 12 13 14 15 16

o

Time (min)
o

o

40.0% 33.3% 27.8%
18

Conclusion

o On-the-fly sparse

e Semi-path-sensitive

e On-demand searching

Q&A

