
Falcon
A Fused Approach to Path-Sensitive Sparse Data

Dependence Analysis

Peisen Yao, Zhejiang University
Jinguo Zhou, Ant Group

Xiao Xiao*, Ant Group (Presenter)
Qingkai Shi, Nanjing University
Rongxin Wu, Xiamen University

Charles Zhang, HKUST

Pinpoint [PLDI’18]
Holistic Value Flow Analysis

2018

2
2022

Cres [OOPSLA’22]
Container Synthesis

Dyck Indexing [OOPSLA’22]
Extended Dyck-CFL Reachability

Wit [ICSE’22]
Divide-By-Zero Detection

Peahen [ICSE’22]
Deadlock Detection

2023

Coral [OOPSLA’23]
Call Graph Construction

Lockpick [USENIX Security’23]
Lock Misuse Bug

Anchor [TOSEM’23]
Container Value-Flow Analysis

2019

Smoke [ICSE’19]
Memory Leak Detection

2020

Catapult [ICSE’20]
Extensional Scalability

Coyote [ICSE’20]
Pipelining

Trident [ISSTA’20]
Bit-Vector Satisfiability

A History of CODA Project

Fusion [PLDI’21]
Sparse Analysis without Path Conditions

2021

Canary [PLDI’21]
Inter-Thread Value-Flow Analysis

Transcode [ASE’21]
Specification Inference

Current Paper [PLDI’24]
Data Dependence Analysis

2024

LibAlchemy [ICSE’24]
Static Analysis with Persistence

Octopus [TOSEM’24]
Parallel Value-Flow Analysis

Cod [ISSTA’24]
Buffer Overflow Bug Finding

DAInfer [FSE’24]
Infer Alias Spec via LLM

Data Dependence Analysis

3

*x = b
y = f(x)
a = *y

a = *y
def use

*x = bDoes the value of a rely on the value of b?

Answer the def-use related queries

High Efficiency

Analyze millions of lines
of code within 2 hours

High Precision

Build inter-procedural path-

sensitive value-flow graph

High Scalability

Analyze millions of lines
of code within 64 GB

Problem Statement

4

Challenge: Aliasing-Path-Explosion Problem

• Assignments to and from indirect memory locations complicate path
conditions by the disjunction of the conditions of assignment value, points-
to, and statement location in the Cartesian Product manner.

𝜎 : *p = q

PTS(𝑞) = { 𝜑3 : o3 , 𝜑4 : o4 }PTS(𝑝) = { 𝜑1 : o1, 𝜑2 : o2 }

𝜑1 𝜑2

[𝜎] X [𝜑1, 𝜑2] X [𝜑3, 𝜑3]

Path conditions with massive redundancy !!

𝜑3 𝜑4

5

Existing Works

Bootstrapped Approach Layered Approach

Neither of existing approaches scale to millions of lines of code.

Use caching, pruning, simplification, and
searching heuristics to speedup SAT solving

Enable sparse path-sensitive analysis with
pre-computed path-insensitive results

Still too many SAT queries and results are
represented in a dense manner

Introduce too many spurious value-flow
paths and hurt performance and scalability

Symbolic execution such as Focal Sparse analysis such as SVF

6

Falcon Key Design

Program

Client
Applications Stitched SEGs

(Similar to exploded super graph in IFDS)

On-the-Fly Sparse and Semi-Path
Sensitive Intra-procedural analysis

Sparse VFG (SEG) with
Symbolic Objects [PLDI'18]

Inline Points-to Sets and
Instantiate Symbolic Objects

On-demand Context-
sensitive Data

Dependence Searching

Sparse Points-
to Sets

+

Formal/actual matching
for SEGs

7

Intra-procedural Analysis

On-the-Fly sparsity Sparse value-flow graph construction and pointer
analysis performed together

A memory location defined at a program point l can
only be used at program points dominated by lKey Idea

Store Rule

Dominance
Frontiers

Walk up the
dominator tree

Load Rule

Query value
of m@l6?Store Mapping@l6

Query value
of m@l5?

8

Intra-procedural Analysis
70% constraints are satisfiable

90% of unsatisfiable constraints are easy to solve

Key Idea

Semi-Decision Procedure
• Solve easy constraints that can be determined UNSAT in linear time
• Boolean abstraction + Semi- decision procedure

Programs #SAT Queries #UNSAT (All) #UNSAT (Easy)

transmission 26996 6926 (25.7%) 6696 (96.7%)

rats 23897 8297 (34.7%) 8264 (99.6%)

curl 12957 4528 (34.9%) 4463 (98.6%)

Semi-path-sensitive

9

Inter-procedural Analysis

p SO1

• Use Symbolic Object (SO) for memory locations
accessed by pointers of the formal parameters.

• Away for implementing storeless memory model.bar(p) {

*p = 2;

}

• Inline the callee’s side-effects of the points-to structure into the caller
• Mark the aliased symbolic objects at the call sites

foo(q) {

*q = 1;

L: bar(q);

z = *q;

}

q SO2

• Mark the symbolic objects SO1 and SO2 aliased at
the call site L to stitch the SEGs of foo and bar.

• Create a def of SO2 after the call site L and
perform the store rule.

10

bar(p, q);

qux(v);

foo(p, q) {

bar(p, q);

L: x = p->n;

}

bar(u, v) {

w = qux(v);

u->n = w;

}

qux(e) {

return e;

}

u->v = w

SO2.n

SO2

u v

bar

ret

e

qux

bar(p, q);

bar(p, q);

x = p->n;

SO1

p q

foo

SO1.n

x

Dependence Edge

Aliasing Edge

[Query] Which variable does x depend on?

Points-to Edge

[Answer] x depends on q

On-demand Context-Sensitive Searching

Evaluation Setup

11

• Implementation
• Build on top of LLVM and Z3 SMT solver
• Support most C/C++ features such as unions, arrays, and classes

• Environment
• 64-bit machine with 40 CPUs@2.20 GHz and 256 GB RAM

• Experiments
• Value-flow graph construction
• Thin slicing for program understanding
• Use-after-free bug detection

Benchmarks

120 1000 2000 3000 4000 5000 6000 7000 8000 9000

crafty

eon

gap

vortex

perlbmk

gcc

git

vim

wrk

libicu

php

ffmpeg

ppsspp

mysql

rethinkdb

firefox

Lines of Code (KLoC)

SPEC
CINT2000

Open-source
Projects

7.9M
3.7M

2.1M

13

• Goal
• Examine efficiency and scalability of Falcon for constructing value-flow graphs

• Setting
• Cutoff time is 12 hours

Evaluating Value-flow Graph Construction

Name Flow Sensitivity Context
Sensitivity Exhaustive

SVF [CC'16] ✗ ✗ ✓

SFS [CGO'10] ✓ ✗ ✓

SUPA-FS [FSE'16] ✓ ✗ ✗

SUPA-FSCS [FSE'16] ✓ ✓ ✗

DSA [PLDI'07] ✗ ✓ ✓

14

Falcon is More Scalable
• Time: 17×, 25×, 4.4× faster than SVF, SFS, DSA
• Memory: 1.4×, 1.9×, 4.2× less memory than SVF, SFS, DSA

• SUPA-FS and SUPA-FSCS only finished analyzing crafty and econ

Evaluating Value-flow Graph Construction

0

100

200

300

400

500

600

700

1 2 3 4 5 6 7 8 9 10 11 12 13

Ti
m
e
(m

in
)

SVF SFS DSA Falcon

0

50

100

150

200

1 2 3 4 5 6 7 8 9 10 11 12 13

M
em

or
y
(G
B)

SVF SFS DSA Falcon

15

• Goal
• Measure efficiency and precision of semi-path-sensitive value-flow graphs

• Setting
• Exclude time for building value-flow graphs
• Slicing queries are derived from realistic third-party typestate analysis

• Compare to the same tools as in before

Evaluating Thin Slicing

16

Falcon is More Efficient and Precise on the premise of Soundiness
• Efficiency: up to 302× faster than SUPA-FSCS and 54× on average
• Precision: produce 5.5×, 1.9×, 2.6×, 1.3× smaller slices than SVF, SFS, DSA,

SUPA-FSCS

Evaluating Thin Slicing

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10 11 12 13

Av
er
ag
e
Sl
ic
e
Si
ze

SVF SFS DSA Falcon SUPA-FSCS

17

• Goal
• Investigate efficiency and effectiveness of Falcon for value-flow bug finding

• Setting
• 15-second time limit for each SMT query
• Run in single-thread mode with a cutoff time of 24 hours

Evaluating Use-after-free detection

Name Type Path Sensitivity

CRED [ICSE'18] (Layered) Pointer Analysis Full Path Sensitivity

Clang Static Analyzer (with Z3) (Bootstrapped) Symbolic Executor Full Path Sensitivity

Falcon (with Pinpoint) (Fused) Data Dependence Analysis Full Path Sensitivity

18

Falcon is More Efficient with Lower False Positive
• Efficiency: 10.3×, 1620.8× faster than CRED and CSA
• False Positive: 40.0%, 33.3%, 27.8% for CRED, CSA, Falcon
• Align with the common industrial requirement of 30% false positives

Evaluating Use-after-free detection

15
10

CRED

2

1

CSA

25

11

Falcon

40.0% 33.3% 27.8%

0

200

400

600

800

1000

1200

1400

1600

1 2 3 4 5 6 7 10 11 12 13 14 15 16

Ti
m
e
(m

in
)

CRED CSA Falcon

Q & A

Conclusion

On-the-fly sparse

Semi-path-sensitive

On-demand searching

