AN S5

ralnoftime

rainoftime.github.1o
pyaocaa@zju.edu.cn

B R

Pentium FDIV Error

- a8 \® i Ta rockat epioded seconds alter mmching
Intel PentiumjiiR S Ariane5S XIS EFP RIRIE
EEaEMBERIEFHRE (IR5K851ZZE7T)

WEMATROMX RS A= i)ﬂtl:?ﬁ&ﬁ%@@%ﬁ% IE R FH S Therac25HT
&R T H3ETTHRK R REFREE (Y {E R ERVRETY

: 4@ C-NCAP
l 2011-17-1

{

|arQUl € coverity @ #l#

SonarQube Coverity Cppcheck PVS-Studio

MU TR S 18 R U 85 3 it
5w i L

o BuARMiUEtiA

« B RERHIEIE

HESM TKEFRRRIB I Nt

- SMTKfi#zg N ELIZ1ETRPE

- BT

- BT

15X RAERTEE

ITARLA

H5E

B iBiE ks ER)

* [RIREAEN foo(x)HIERIZE T EFHREIXAIFTT

B 5U: Wikmy_sinkiBiEERREA

- [RIZFERF my sin BYBIRELI=FERRZEY sin

&Y

ak my sin(1.3)

Y= sSn (7()

. N TSRS R
. W HE T EAER:

Al A
~NJ

- MRRFAS (Test Oracle)

zeElliVamA, FliiE HIEfR S SRS

LETUAN lETE

X RIZER A ERER
e my sin SLIPT sin BRZLNS?
* CoquEBH Y FAYmRRRIS?

- MRt = [a)@%(Oracle Problem)

* Elaine Weyuker: “On Testing Non-testable Programs™, 1982

1. AMEEUXTIS

2. B

o TR

20

SCRR_E1RYE (

LoC (million)

19

LLVM

GCC

=5 1E

« GCCBLinuxf@iEXS 7 42

Linux

MU TR S 18 R U 85 3 it

o« NS AR
« BT iztEkiE
« B RERHIEIE

HESM TKEFRRRIB I Nt

- SMTKfi#zg N ELIZ1ETRPE

- BT

- BT

15X RAERTEE

ITARLA

H5E

- IR MRt (Metamorphic Testing)
» —SSERR/ERENNIFUS [AlRIAYTTA [T.Y. Chen et al., 1998]

- EBREA: FIFEXIUEFTR, XX aESEMANERC

LL

Metamorphic
Relation

EAREAIEF T RIPMRARSRLAIZE 4,
(BRI RZEEN/ S ZEXER

0O

10

B it aoR

Components

Autonomous vehicles .
2% 4 Go gle FARER metamorphic testing E

Compilers

4% =
Variability and o
rablity & B [#5449 11,400 ,‘%PEEEI (F3E:40.04%))
decision support
5% § .
. BB BR Perception matters: Detecting perception failures of vga models using
Numerical programs 2022103 metamorphic testing
5% ' Y Yuan, S Wang, M Jiang... - Proceedings of the IEEE ..., 2021 - openaccess.thecvf.com
Others: Adobe, NASA, 201843 Visual question answering (VQA) takes an image and a natural-lang.uag(.e question as input
b it BESGEHE... and returns a natural-language answer. To date, VQA models are primarily assessed by ...
o erzico”';’"' Y R% 9318 BIIMARE: 13 MEXE HiE6MRE 9
% HARXMEHF
REHAF Testing web enabled simulation at scale using metamorphic testing
Bioinformatics J Ahlgren, M Berezin, K Bojarczuk... - 2021 IEEE/ACM ..., 2021 - ieeexplore.ieee.org
8% ‘ TBRIES We report on Facebook's deployment of MIA (Metamorphic Interaction Automaton). MIA is
h T used to test Facebook's Web Enabled Simulation, built on a web infrastructure of hundreds ...
iR RR Yo 1R DY S| WSIRARE: 20 HXXE FiA 5 ThRAE 9
Web services and : A . : _ y
abiications HRTIR [HTML) Testing multiple linear regression systems with metamorphic testing
PP % e E QH Luu, MF Lau, SPH Ng, TY Chen - Journal of Systems and Software, 2021 - Elsevier
14% ’ Regression is one of the most commonly used statistical techniques. However, testing
LR regression systems is a great challenge because of the absence of test oracle in general. In ...
v 8838 Yo 1R7%F D9 3| WIIBARE: 9 MXXE B 5 HRA Webof Science: 1 99
& SRR [HTML) DeepBackground: Metamorphic testing for Deep-Learning-driven image

recognition systems accompanied by Background-Relevance

Z Zhang, P Wang, H Guo, Z Wang, Y Zhou... - Information and Software ..., 2021 - Elsevier
Abstract Context: Recently, advances in Deep Learning (DL) have promoted the
development of DL-driven image recognition systems in various fields, such as medical ...
Yo &% Y9 SIE WEIARE: 5 BXXE Fifi2 MRA Webof Science: 1 99

11

B 5U: Mimy sinEFdy

» RIRFERF my sin B TRESLIM=FBERZEY sin

my_sin

&

Ak my_ sin(1.3)

Y= SN (X)

o ANFNIE: my sin(1.3) MiZIR[BEY{TA?
- (BR2HNE: sin(x) = sin(x + 2m)

12

B GU: Migtmy siniBi&K

ISEEZEIUN

1.3 1.3 +2m

sin(x) = sin(x + 2m)

my sin(1.3) * | = my_sin(1.3 +2m) |

01 02

13

B STt E AR

LRI NS Jasulhin&e

X1 o X2
M LRI M

R (X1,X5,01,0,)

F | = F

1414

B 5iEMSTERE

BT R R

e

= TS

AT

HRIEI 3R RS /R 5L

N
i
=
o
\mr
AT

MEROETWERER

15

B 55: oy _sinthz

B KA

sin(x) = sin(x + 2m)
Eia g
1.2
MG R LNl
1.2 +2m
MERZRER

my sin(1.2) =my sin(1.2 + 21m)?

/IIIII'

16

MU TR S 18 R U 85 3 it

o« MIXTAS)RR
o BuARMiUEtiA
- HEXFRAIEE

HESM TKEFRRRIB I Nt

- SMTKfi#zg N ELIZ1ETRPE

- BT

- BT

15X RAERTEE

ITARLA

H5E

17

B Vit SimRRRR—H4

— MENFE R BE

* sin(x) = sm(x + 21)
* sin(X+1) = -sin(x)
* sin(T-x) = sin(x)

SENEZELHMRMEXRR J

MRs

18

B itit: BTEXR = HEXR

‘ R REBENRTHEFRR, BEARTHERR J

wWilliER #wNER

IN

IA

Slx| <m/2, 0 x <y => sin(x) < sin(y)

19

B idit: ST A RELEREIBug?

‘ ANEERER R R A BEE AR RVERPEE R J

B & & &
o Y. & &

LRSS S

20

NES: AP 45 2 st

A FS AR = AR

On Testing Non-testable Programs

Elaine J. Weyuker

Department of Computer Science, Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street,

New York, New York 10012, USA

A frequently invoked assumption in program testing is that there is an oracle (i.e. the tester or an external mechanism
can accurately decide whether or not the output produced by a program is correct). A program is non-testable if either

an oracle does not exist or the tester must expend some extraordinary t of time to d ine whether or not the
output is correct. The reasonableness of the oracle assumption is ined and the lusion is hed that in many
cases this is not a realisti ption. The q g the availability of an oracle are examined and
alternatives investigated.

1. INTRODUCTION

It is widely accepted that the fundamental limitation of
using program testing techniques to determine the
correctness of a program is the inability to extrapolate
from the correctness of results for a proper subset of the
input domain to the program’s correctness for a/l elements
of the domain. In particular, for any proper subset of the
domain there are infinitely many programs which
produce the correct output on those elements, but produce

an incarrect antnnt far came other damain element

tics of programs for which such assumptions are not
valid. Section 3 considers how to test such programs,
Section 4 looks at techniques which are particularly
applicable to numerical and scientific computations, and
Section 5 discusses the consequences of accepting the
oracle assumption. Section 6 concludes with suggestions
for software users and procurers.

2. THE ORACLE ASSUMPTION AND NON-
TESTABLE PROGRAMS

LR RS RE S

21

MU TR S 18 R U 85 3 it
o MAFASHFAS AL

o BuARMiUEtiA

« B RERHIEIE

HESM TKEFRRRIB I Nt

» SMTREERR P ELZ TR

- BT

- BT

15X RAERTEE

ITARLA

H5E

22

- Satisfiability Module Theories (SMT) [a)&

@:x>0Ax<0
UNSAT

23

- Satisfiability Module Theories (SMT) [a)&

:x>0Ax<1
SAT

24

- Satisfiability Module Theories (SMT) 3KfiFss

« WNERXxEEEEL: x +x = 3 UNSAT
« WNERXxBSCE: x+x = 3 SAT

D e e
BB : UNSAT

25

- Satisfiability Module Theories (SMT) 3KfiFss

 Z3KRMREE: RSN OUERIEZERIN
¢ ﬂ:/I\/ﬂij l£
* TACAS most influential paper award
« ETAPS test-of-the-time award
 CAV award
y —:’Iﬁ*iln =
 SIGPLAN software award

- HoiEE
e Skolem award
 Herbrand award

26

B sViRese— L

« I,

JﬂZIJJIT

o £

=X EAEE

« WEBAASE];

° ﬁTL\EgJiIE

AAS SIE S
¢ _\LE |:\\£

E

35 [OSDI"08 BRIEIEX]

KA,

E [PLDI’13 7RHiEX(

5 E

AI=PN] CLAP

{ [POPL 02, #AHEEA FFLLZ 1F SLAM
[ICFP’14, “BEfSMTKMERRHIRIFRT"] A LiquidHaskell

I EMg KA RRZT 3R Z3FICVC4 SMTKAEES![1]

27

B 6): EFSMTRBHRFESIT

1
2
3
4
5
6
7}

f)

int main() {
int x, vy
if(y !'= 0){
int w

print (10 /

input();

x / y;
(w+ 1));

SRS

'3
" 4
> <
=

I8 Pl

AHHZCRLR:

Guo et al., Precise Divide-By-Zero Detection with Affirmative Evidence, ICSE’22

H >

B 1K

X
E— e:yFO0OAwWw=—Aw+1=0

B SMTSRARSE LTSRN

a
¢: 4= —1 =—] QMTKAZSE |== UNSAT

% cat formula.smt2 @4IXJ7f commented on 28 Oct 2019 Member
(declare-fun a () Int)
(declare-fun b () Int)
(assert (= (divab) (- 1)))
(check-sat)

| can reproduce this issue and will look into it.

d' ©

% z3 formula.smt2

sat

rF==—======="" _ @4tXJ7fs.e f-assigned this on 28 Oct 2019
I$ cved formula.smt2 HE% I

lunsat

|
S © () 4tXJ7f added mmbescun 28 Oct 2019

29

B sV TRESSBIERIE

UNSAT
[ﬂ%ﬁ@mﬁ%m} — /7 ErEem

N\ SAT
e o S

(declare-fun a () Int)
(declare-fun b () Int)
(assert (= (divab) (- 1)))
(check~-sat)
PAN === 2] =! =
o — + PITERIE RS

e | . DRI KRR
% cvecd formula.smt2 i
| unsat ﬁ

T e e Sae SEe SEE SEE BEE SEE BEE S S

30

B sVrReEEEn i

1. aa]
2. Q04A]

31

- EEEES ESREEE S

Z 9 Mzt (differential testing) e.g., [SMT°09, CAV’18, OOPSLA’20, ...]

A~O1

hio

| s

(p —) *ﬁg% B) 02 Ol — 02 — 03?

N | skfgez | =—-— O,

[EPR: AEERbIRYFIRSERIRVZTR (LLaN RE KRS AST)

32

B EsiEm -

3ENEI5 AR
o« NS AR
o BuARMiUEtiA
« B RERHIEIE

- H

HESM TKEFRRRIB I Nt

- SMTKfi#zg N ELIZ1ETRPE

IR XS

» ETIEUSERIGA

33

- YinYang: HEFE N SRIHIZMIE (Winterer et al. PLDI20]

 “BRE” EBAAEEERIFR LR, BRIFTHIERAVFTZIR

MFLIR

TR

P1 P P3
SMTKfiFEs | — SMTK =%

Winterer et. al., Validating SMT Solvers via Semantic Fusion, PLDI’20 ~_~ 34

Bl =%RE: TR

@, SAT

| >

HHE
) (pZ SAT (pcancat

35

B 6 HHEEmAE

®1=x>0Ax>1 SAT »,=y<0Ay<1 SAT

36

B O HERAR

P1 P>
Peoncat= (x> 0Ax> DA< 0Ay< 1) SAT

37

B 538 0., ¢ P BB RGBT LR

P1

| >

HHE
) Oy, Peoncat SAT
x>0Ax> D A@E<0Ay<1)

D1 \Z 38

P itit: EUEIE 0o TR

BR: BRI R R A BREIN G RSER)

P1

| >

HHE
) %, Peoncat SAT
(x>0Ax> DA< 0Ay< 1)

P1 0y .

B c<iEbbsk: anfmi—ERa

$1 T

%

(pconcat

Bir : FelZHE; L E R

40

- RRA ZE: RIS ERE (Fusion Function)

D1 %,
Peoncar = (x> 0Ax> 1)A(y< 0Ay< 1) SAT

N/

Z=X+Y

Fusion Function

41

D1 %,
Peoncar = (x> 0Ax> 1)A(y< 0Ay< 1) SAT

N/
Z=Xx+Yy
7N\

X=z—y y=z—X

Inversion Function 42

- R

D1 %,
Pconcar = (x> 0 Ax > 1)/\(y< 0 Ay< 1) SAT

43

 REEERCEs

$1 P>
(pfused = (X > () /\(Z —y) > 1) /\((Z —)C) <0 Ny < 1) SAT

Eea
7\
-y y=z-—x

44

- (Pfuse(ﬂ%g-??(pconcatﬂgﬂiﬁalti

Peoncar = (x> 0AXx> I)A(< O0AY< 1)>
X = 2 y=—2

45

D ?D.. 227D . LTHSH

x=2 z=x+y=0 y=—2 >

(pfusedz (X> O/\(Z —y) > 1)/\((2—)6) < O/\y< 1) SAT

Z=x+y\
7N\
2B G

X = - Z — X

46

B EFENEaHE

P1

| >

HHi%
(PZ (pconcat

47 47

B YinYang3B$SCISsE R

o SMLATE]: 2019.07-2019.10

Logic Z3 CVC4 | Total
Status Z3 CVC4 | Total NIA ,) ;
Reported 45 13 58 Type Z3 CVC4 | Total NRA 15 1 16
Soundness 24 6 QF NIA 0 1 1
Fixed 36 6 42 Crash 11 1 12 QF _NRA 2 0 2
Duplicate 4 1 5 Performance 1 2 3 QF_S 16 4 20
Won't fix 2 0 2 Unknown 1 0 1 QF_SLIA 3 1 1

48

B X EA A — LT

EENERFLAIRAHEM RS RRER T 7 AP LIRIEZRZS(H)

Type Fusion Function Variable Inversion Functions
Semantic Fusion rx ry
Peoncat = (x>0Ax>1DAF<0AY<L]) Int X+y z-y z-X
> x+c+y z-c—y Z-c-Xx
[x=2 y=_2] X%y zdivy zdiv x
Cl*X+C %Y +c3 (z-coxy—c3)dive; (z—-c1*xx—c3)diver
Phused = (x> 0Az=Y)>DA(z—=x)<0Ay<1) SAT
Real x+y z-y z-Xx
x+c+y z-c—y Z-Cc-X
72=Xx++ y X%y z/y z/x
/ \ CL*X+Co %y +C3 (z—ca*xy—c3)/c1 (z—c1*x—c3)/cy
X=2- y y =27—X String X str++y str.substr z 0 (str.lenx) str.substr z (str.lenx) (str.len y)
X Str++y str.substr z 0 (str.lenx) str.replace z x "
X Str++ ¢ str++ y str.substr z 0 (str.lenx) str.replace (str.replacez x ") ¢ "

49

MU TR S 18 R U 85 3 it

- WATRS e
. BESEA
- BESE R

HESM TKEFRRRIB I Nt

- SMTKfi#zg N ELIZ1ETRPE

- ETIENEEHAEE

- H

IEI SR E

50

- Sparrow-EF 1R AEAIRT MR (ESEC/FSE 21

* XEEMFLIRINSF Al e 13T R

DILSEETIAN AREN

Skeletal Approximation Enumeration for SMT Solver Testing, ESEC/FSE’21 o1

B #%UEE: BEE SRR

TEl S, — S,
=S, UNSAT, MIS,—EBUNSAT

iRl s, > S, -
=S, SAT, Ml S,—EHSAT

52

B EEE SR

DILSEETIAN

¥1 P>

IR

Z0,“SAT”, W3Fe, IRl
SMTKfiFEs | — SMTK =%

0, 07

53

B EEE SR

DILSEETIAN AREN

54

B Scsbkit: anMrILosRig L/ TR 2

s FER VLTI ATUES)

« KPP IBREE
UAZR, e.g., [Bryant et al. TACAS’07]
W REERMNBIEHTE .o, [McMillan et al. CAV’06]

y /\ﬁi—;%fﬁ%ﬁ

Bir : 8

2R

HERSRBEELSE

55

W EER AL e

(P e—

(

V

V

P1

V

V

d1

) A
1. Z3Z Conjunctive
Normal Form (CNF)fZT,
) A

e (EERERRY L/ MU LRI /Ay L/ TE Q

(Po dm—

(

V

V

P2

V

V

d>

) A

2. B FERY/ R R EAYEL
) A

56

- WeEREELEPES

1. iBiEFS Tk
*E.g.,x <y+32X%x <y B EITUG/IBEILER)

2. sRFEEAN
« “pV [BXIp BY_LEIE{
c “p A EXIp B

f RAESRENERRIZIR AR

57

- SparrowsB > SEIEE R

o SMELATE]: 2020.11-2022.02

Table 3: Status of the bugs found by Sparrow. Table 4: Bug type of the confirmed bugs.

Status Z3 CVC4 Total Type Z3 CVC4 Total Fixed
Reported 38 46 84 Soundness 4 4 8 8
Confirmed 30 42 72 Invalid model 10 12 22 20
Fixed 28 40 68 Crash 16 26 42 40
Duplicate 1 2 3

Invalid 7 2 9

58

B)% ERSMTRIREAIE it

ETE N SR I E TR A08 M
(pconcatz(x>0/\x>1)/\(y<0/\y<1)> (Vipi| V) A
(P e—
L6=3 y=-2] (| |v] |vi]a])a

Prused = (x>0A(z—y)>DA(z=x)<0Ay<1) SAT

7 N (Vip:| V) A

X=z-y y=27-X

59

B GRS iR

MR =)R 2 5 32 0t

e EFSMTRAEEZAYLHIZ M1z

FrERIa)RE: B3R R AENUAEGIS

==

AHIER

60

e EREHE N

Finding Bugs in Database Systems via Query Partitioning

MANUEL RIGGER, Department of Computer Science, ETH Zurich, Switzerland
ZHENDONG SU, Department of Computer Science, ETH Zurich, Switzerland

Metamorphic Testing of Deep Learning Compilers

DONGWEI XIAO, The Hong Kong University of Science and Technology, China
ZHIBO LIU, The Hong Kong University of Science and Technology, China
YUANYUAN YUAN, The Hong Kong University of Science and Technology, China
QI PANG, The Hong Kong University of Science and Technology, China

SHUAI WANG*, The Hong Kong University of Science and Technology, China

Metamorphic Testing: A Review of Challenges
and Opportunities

TSONG YUEK
HUAI LIU, vi(
PAK-LOK PO
DAVE TOWE)
T. H. TSE, The
ZHI QUAN Zi

Mectamorphic tes
ment is a set of
relation to multig
increasing body ¢
relation identifici
validation and ev
testing and discy
metamorphic tes|

C
ing and debuyy

S Concepts: « |

Additional Key V
problem

ACM Reference
Tsong Yuch Chet
Metamorphic Tes
2018), 27 pages.

https://doi.org/1(

This research was

a grant of the Gen
acknowledges the

Nottingham Ninglj
Science and Teclux
It is with deep regr
Authors’ addresses
versity of Technolol
ing & Science, Viet,
School of Business
D. Towey. School
DNave Towey@notti
Hong Kong: email:
gong. Wollongong.
Permission to mak|
provided that copid
the full citation on
Abstracting with cf
prior specific perm|
© 2018 ACM 0360

https://doi.org/10.1

EEE ON SOFTWARE

VOL 42, NO.9, SEPTEMBER 2016 805

A Survey on Metamorphic Testing

Sergio Segura, Member, IEEE, Gordon Fraser, Member, IEEE, Ana B. Sanchez, and Antonio Ruiz-Cortés

Ab test whether a fautt, often by comparing the cbserved program output to the
expected output. This is not always practical, for example when a program's input-cutput relation is complex and difficult to capture

formally an alternative, where y indidual tput,
but by applying a 10 a test input the progr “morphs” into a different 0no as a result. Since

testing have been made. and the technique

has seen successtul applications in a variety of domains, ranging from web services to computer graphics. This article provides a

nd application areas, and anall

survey on testing: it the

practice in empiical studies of metamorphic testing as well as the main open challenges.

Index T testing, . survey

1 INTRODUCTION

Snrm ARE testing is an essential but costly activity applied
during software development to detect faults in pro-
grams. Testing consists of executing a program with test
inputs, and to detect faults there needs to be some procedure
by which testers can decide whether the output of the pro-
gram is correct or not, a so-called fest oracle [1]. Often, the test
oracle consists of comparing an expected output value with
the observed output, but this may not always be feasible. For
example, consider programs that produce complex output,
like complicated numerical simulations, or code generated
by a compiler—predicting the correct output for a given
input and then comparing it with the observed output may
be non-trivial and error-prone. This problem is referred to as
the oracle problem and it is recognised as one of the fundamen-
tal challenges of software testing [11, 2], 131, 14].

Metamorphic testing [5] is a technique conceived to allevi-
ate the oracle problem. It is based on the idea that often it is
simpler to reason about relations between outputs of a pro-
gram, than it is to fully understand or formalise its input-
output behaviour. The prototypical example is that of a pro-
gram that computes the sine function: What is the exact
value of =in(12)? Is an observed output of —0.5365 correct?
A mathematical property of the sine function states that
sin(x) = sin(x —), and we can use this to test whether
sin(12) = sin (7 ~ 12) without knowing the concrete values
of cither sine calculation. This is an example of a metamor
pliic relation: an input transformation that can be used to
generate new test cases from existing test data, and an out-
put relation, that compares the outputs produced by a pair

S. Segura, AB. Sdnc

A. Rutz-Cortés are with the Department of
Sustems, Universidad de Sevilll, Spin

anabsa ruiz Nves.s

the Dapartment of Computer Science, University of
Sheffield, Shefficld, United Kingstom. E-mail: gordon fraser@heffield ac.uk

Manuscript rec
Dete of publicat

2015; revisat 9 Feb. 2016; accepted 14 Feb. 2016
Feb. 2016: date of current version 23 Sept. 2016,
Recommended for acceptance by P. Tonella.

For i reprints of this article, plaase send e-mail 10
reprints@i ence the Digital Object entifier below

Digital Object Mentifier mo. 10.1109/TSE 201 5

of test cases. Metamorphic testing does not only alleviate
the oracle problem, but it can also be highly automated

The introduction of metamorphic testing can be traced
back toa technical report by Chen etal. [5] published in 1998
However, the use of identity relations to check program out-
puts can be found in earlier articles on testing of numerical
programs [6], [7] and fault tolerance [8]. Since its introduction,
the literature on metamorphic testing has flourished with
numerous techniques, applications and assessment studies
that have not been fully reviewed until now. Althos
papers present overviews of metamorphic testing, they are
usually the result of the authors” own experience [9], [10]
1111, 121, [13), review of selected articles [14], [15], [16] or sur-
veys on related testing topics [3]. At the time of writing this
article, the only known survey on metamorphic testing is
written in Chinese and was published in 2009 [17). As a
result, publications on metamorphic testing remain scattered
in the literature, and this hinders the analysis of the state of
the art and the identification of new research directions.

In this article, we present an exhaustive survey on meta-
morphic testing, covering 119 papers published between
1998 and 2015. To provide researchers and practitioners
with an entry point, Sectior ontains an introduction to
metamorphic testing. All papers were carefully reviewed
and classified, and the review methodology followed in our
survey as well as a brief summary and analysis of the
selected papers are detailed in Section 3. We summarise the
state of the art by capturing the main advances on metamor-
phic testing in Section 4. Across all surveyed papers, we
identified more than 12 different application areas, ranging
from web services through simulation and modelling to
computer graphics (Section 5). Of particular interest for
researchers is a detailed analysis of experimental studies
and evaluation metrics (Section 6). As a result of our survey,
a number of research challenges emerge, providing avenues
for future research (Section 7); in particular, there are open
questions on how to derive effective metamorphic relations,
as well as how to reduce the costs of testing with them.

gh some

1. Note that 86 out of the 119 papers reviewed in oar survey were
published in 2009 or later

0008.5580 C 2016 1EEE. Porsonal Lse i permitted. but repuACHOATedSIRt0n requees (EEE penmasion
Sou rers P e I e e

6l

62

