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Abstract. Many program analyses repeatedly invoke a common subrou-
tine: checking whether a fixed formula remains satisfiable when conjoined
with each predicate in a given set. We formalize this task as monadic
predicate abstraction (MPA). We examine two baseline strategies and
propose a new feedback-guided algorithm that leverages unsatisfiable
cores to partition the predicate set via conjunctive under-approximation.
We evaluate all approaches on benchmarks derived from symbolic ab-
straction, characterizing their performance across a range of structural
and semantic dimensions. Our work establishes MPA as a fundamen-
tal abstraction primitive and provides both a theoretical framework and
practical insights for its efficient implementation.
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1 Introduction

Predicate abstraction [1-4] is a foundational technique for constructing finite-
state models of systems with unbounded or infinite state spaces. As an instance of
abstract interpretation [5, 6], it approximates concrete program semantics using
Boolean combinations over a finite set of logical predicates. These abstractions
are amenable to automated reasoning via SAT and SMT solvers, and have been
successfully applied to software [3], hardware [7], and protocol verification [8].

At the core of predicate abstraction lies the following operation: Given a
formula ¢ over program variables in a background theory 7', and a finite set of
predicates P = p1,...,p,, compute the strongest Boolean combination over P
that soundly over-approximates ¢. In practice, this operation is often realized by
a battery of satisfiability checks that test a shared context against many related
predicates, reusing solver reasoning wherever possible [2].

In this work, we focus on a variant but recurring problem that arises across
a range of program analyses: determining the satisfiability of a fixed symbolic
context ¢ conjoined with each predicate in a set. This arises, for instance, when
verifying multiple properties under a shared path condition, or when checking a
family of assertions along a symbolic execution path:

— K-Induction: In verifying multiple safety properties of transition systems, a
common transition formula—typically an unrolling of the system semantics



to a bounded depth—is conjoined with distinct safety predicates. Industrial
systems often specify tens to hundreds of such properties, yielding a large
number of satisfiability queries over a shared transition context.

— Value-Flow Analysis [9, 10]: The analysis encodes realizable value-flow paths
as a symbolic formula capturing how values propagate through the program.
The same encoding is queried against location-specific predicates to verify
safety conditions at different program points (e.g., pointer dereference sites).

— Symbolic Abstraction [11, 12]: For template linear domains, the best abstract
transformers can be computed by encoding program semantics as a fixed
formula and solving for parameters that yield over-approximations. OMT
solvers explore candidate parameters via iterative refinement, issuing satis-
fiability queries that vary the predicate while reusing the shared semantics.

We isolate and formalize this standard structure as the problem of monadic
predicate abstraction (MPA):

Given a formula ¢ and a set of predicates P = {p1,pa,...,pn}, determine
for each predicate p; whether the conjunction ¢ A p; is satisfiable.

This formulation can be viewed as a query-answering problem. A trivial ab-
straction answers unknown for all predicates, yielding a sound but maximally
imprecise result. More precise abstractions distinguish between satisfiable and
unsatisfiable cases, enabling clients to reason definitively about the feasibility
of their solutions. Our goal is to compute the most precise abstraction possi-
ble, classifying each predicate as satisfiable, unsatisfiable, or unknown, while
maintaining scalability.

There have been several related techniques to accelerate similar classes of
problems—for example, expression caching in symbolic execution [13-15], unsat-
core reuse in verification [8], and incremental solving inside SMT solvers. How-
ever, previous techniques are typically designed for broad reuse across heteroge-
neous queries, such as those arising from different paths, time frames, or analy-
sis stages. For example, symbolic execution frameworks employ unified caching
layers that store and reuse solver results across queries. While offering general-
purpose acceleration, they do not exploit the structural regularities in MPA.

We argue that monadic predicate abstraction should be treated as a first-class
operation, rather than as a byproduct of other analyses. This perspective enables
new opportunities for efficiency and precision. First, reasoning over the entire
batch exposes semantic relationships among predicates—implications, mutual
exclusion, and dominance—that can be exploited to prune the search space or
discharge queries without invoking the solver. Second, a dedicated bulk-checking
interface enables amortization of solving effort across the batch. Shared the-
ory lemmas, learned clauses, and branching heuristics can be reused across all
queries, reducing redundant computation and improving throughput.

As a first step toward principled support for MPA, we investigate two exist-
ing algorithmic strategies: linear scan and disjunctive over-approximation(§ 3.1).
Additionally, we introduce a new feedback-guided algorithm that leverages un-
satisfiable core extraction and predicate partitioning (§ 3.2). All the methods



are theory-agnostic but can incorporate theory-specific enhancements when ap-
plicable. We present a detailed analysis of the algorithms and discuss practical
optimization heuristics (§ 3.3). To provide insight into their practical behavior,
we evaluate them using queries from symbolic abstraction (§ 4). Our results show
that each algorithm exhibits distinct performance trade-offs. We also discuss fu-
ture directions for enhancing monadic predicate abstraction (§ 5). In summary,
we make the following main contributions:

— A precise formalization of the monadic predicate abstraction problem.

— A new feedback-guided algorithm for monadic predicate abstraction, which
exploits unsatisfiable cores to dynamically partition the predicate space.

— A systematic analysis and evaluation of three algorithmic approaches with
respect to their theoretical properties and practical performance. The im-
plementation is available at https://tinyurl.com/3mwwr9xc.

2 Motivation

Program analyses rely critically on abstraction to enable automated reasoning
over infinite or intractable state spaces. A recurring computational pattern arises
in this context: given a fixed symbolic formula p—typically encoding a control-
flow slice, symbolic execution path, or transition relation—and a finite set of
predicates P = {p1,...,pn}, determine the satisfiability of ; Ap for each p; € P.
Since each query conjoins ¢ with exactly one predicate from P, we refer to this
pattern as monadic predicate abstraction (MPA). In this section, we illustrate
its role in representative analysis tasks.

K-Induction for Multiple Property Verification. K-induction [16-19] ex-
tends classical mathematical induction to verify temporal properties of transi-
tion systems by considering execution traces of bounded length k. When verify-
ing multiple safety properties simultaneously, both the base and inductive steps
share a common formula representing the system’s transition semantics.

Let a transition system be specified by the pair (I(x), T'(x,x’)) over state
variables x, and let P,..., P, be the safety requirements to prove invariance.
For a single property P; the two k-induction proof obligations are

k—2
Base: I(xzg) A /\T(:EZ-,:B,»H) E Pj(xr—1),
i=0
k—1
Step:  (Pj(zo) A+ A Pj(xr—1)) A /\T(wiawiJrl) = Pj(xy).
i=0

Crucially, the handling of different properties shares the same unrolling of the
transition relation: @, = I(xg) A /\i:o1 T(x;,xi+1). Hence, each property P;
boils down to solving

By, A (Pj(wo) Ao A Pj(wk,l)) A —Pj(x).

induction hypothesis
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The verifier, therefore, invokes the SAT/SMT solver on the same core for-
mula Phiy with a different predicate attached each time, which exactly matches
the monadic predicate abstraction pattern.

Path-Sensitive Sparse Value-flow Analysis. Value-flow analysis [20, 10,
9, 21, 22] tracks data dependencies through program execution paths to detect
safety violations such as null-pointer dereferences, use-after-free, and taint issues.
Even for a single property type, the analysis exhibits the monadic predicate
abstraction pattern when checking multiple program locations.

Consider null-pointer dereference detection. The analysis constructs a shared
formula ¢ capturing all realizable value-flow paths from potential null sources:

(@) = \V ( A\ guard(@)) :
mw€ValueFlowPaths \e€m
where guard(e) represents branch conditions along path edges, and realiz-
ability ensures context-sensitivity through call-return matching constraints.
Each dereference site ¢; induces a predicate P;(x) = (ptr; # null). Since
dereferences are frequent, the number of such queries is large. The analysis thus
repeatedly evaluates a shared formula ¢ against many predicates P;.

Synthesizing Best Abstract Transformers. Given a Galois connections be-
tween the concrete domain (C, <¢) and abstract domains (A, < 4). with abstrac-
tion and concretization functions a : C — A and v : A — C. The best abstract
transformer for a concrete transformer f : C — C is defined as f* = ao for.
However, this definition is non-constructive: it does not provide a method for
computing a representation of f¢, nor for applying it algorithmically.

Symbolic abstraction [12, 23, 11, 24] addresses this by encoding program se-
mantics as a formula ¢ and computing the least abstract element a € A such
that [¢] C v(a). In template linear domains, abstract elements are conjunctions
of inequalities with fixed linear forms and variable parameters. The abstrac-
tion problem reduces to solving optimization modulo theories (OMT) queries:
max gi,...,9gn S.t. ¢, where each objective g; is maximized independently. OMT
solvers typically employ iterative refinement. Each iteration evaluates candidate
parameter vectors ¢ and ¢’ by issuing satisfiability queries of the form:

SAT (p(x, ') Ape(z) A —per (2)),

where ¢ encodes the transition relation, and p. and p.s are predicates instan-
tiated with candidate parameters. Each batch of queries fixes ¢ and varies the
predicates, conforming to the MPA pattern. Multiple optimization objectives
may be handled across batches, with some objectives converging early while
others are resolved in later stages.

3 Algorithms

In the applications described above, a fixed formula ¢ is evaluated repeatedly
under varying sets of predicates. Moreover, analyzing a single program typically



Algorithm 1: Predicate-by-predicate check

Input: An SMT formula ¢ and a set of predicates P = {p1,...,pn}
Output: Whether ¢ A p; is satisfiable for each p; € P
1 foreach p € P do
2 if o A p is satisfiable then
3 ‘ mark p as satisfiable;
4 else
5 ‘ mark p as unsatisfiable;
6 return marked_results;

Algorithm 2: Compact check via over-approximation

Input: An SMT formula ¢ and a set of predicates P = {p1,...,pn}
Output: Whether ¢ A p; is satisfiable for each p; € P
1 while P # () do
2 VAR \/pep p; // Create disjunction of remaining predicates
3 if o AV is unsatisfiable then
// All remaining predicates are unsatisfiable
mark every p € P as unsatisfiable;
return;
else
// At least one predicate is satisfiable
7 M < a model of p A¥; // Get satisfying assignment
foreach p; € P do
if M = p; then
10 mark p; as satisfiable;
11 remove p; from P;// Remove from consideration
12 return marked_results;

involves solving a large number of such queries. This recurring structure admits
significant optimization: specialized algorithms can exploit the shared computa-
tional patterns to improve performance. This section presents three algorithms
for such problems.

3.1 Existing Approaches

Linear Scan Algorithm. A straightforward and the most commonly-used ap-
proach is to individually check whether each predicate p € P is satisfiable to-
gether with . Despite its simplicity, the number of solver calls grows propor-
tionally with the number of predicates. In § 3.3, we will discuss the optimization
of the algorithm, such as caching and incremental solving.

Disjunctive Over-Approximation Algorithm To reduce the number of solver
queries, Algorithm 2 in [25] applies a disjunctive over-approximation strategy.
The main idea is to group unresolved predicates into a single disjunctive formula
and analyze them collectively, thereby amortizing the cost of solver invocations.



Given a formula ¢ and a set of predicates P = {p1,...,pn}, the algorithm
proceeds iteratively, refining P until all satisfiability results are determined.

1. Predicate Aggregation (Line 2): At each iteration, the algorithm constructs
an over-approximated formula ¥ = \/pi€ p P by taking the disjunction of all
predicates in the current set P.

2. Satisfiability Check (Lines 3-11): The algorithm then checks whether the
conjunction ¢ A ¥ is satisfiable.

— If ¢ AW is unsatisfiable, this implies that no predicate in P can be
satisfied alongside . In this case, each conjunction ¢ A p; is marked as
unsatisfiable, and this round of the algorithm terminates (Line 5). There
is no need for explicit separation of SMT calls for each predicate in P.

— If o AV is satisfiable, the SMT solver returns a model M. The algorithm
iterates through each predicate p; € P and evaluates whether M = p;.
If a predicate p; is satisfied by M, then ¢ A p; is marked as satisfiable
and removed from P (Line 11).

3. The process repeats, with P shrinking after each iteration. The algorithm
terminates when all the predicates are marked.

Theorem 1. Let k be the number of predicates in P for which p/Ap; is satisfiable.
Algorithm 2 requires at most min(k + 1,n) SMT solver calls [25].

Ezample 1. Consider ¢ = (x > 1 Az < 5) and predicates P = {p; : © =
2pa tx > 3,ps i x < 0,pg: x=4,p5 : x <5} The algorithm finishes using
three iterations. First, with P = {pi1,p2,ps,ps,ps}, the algorithm constructs
disjunction ¥ = (z = 2)V(z > 3)V(z < 0)V(z = 4)V(xz < 5). The solver returns
model My = {x = 2} for ¢ A ¥, which satisfies p; and ps. These predicates are
marked as satisfiable. Second, with P = {ps,p3,ps}, the new disjunction yields
model My = {z = 4}, which satisfies po and ps. These are marked satisfiable
and removed. Finally, only p3 : * < 0 remains. The formula ¢ A (z < 0) is
unsatisfiable since ¢ requires x > 1. The algorithm marks ps as unsatisfiable
and terminates. This algorithm completes the task in just 3 SMT solver calls—a
40% reduction compared to the naive linear scan approach.

3.2 Conjunctive Under-Approximation Algorithm

The over-approximation algorithm groups them disjunctively and attempts to
eliminate multiple predicates in a single pass. In this subsection, we propose a
conjunctive under-approximation strategy, which reasons in the opposite direc-
tion: rather than asking whether there exists at least one satisfiable predicate, it
asks whether multiple predicates can be satisfied together. Intuitively, if a group
of predicates is internally consistent, we can classify the entire group with a
single solver call, thereby reducing the need for many redundant queries.
Consider predicates P = x = 0,;x > 0,;x > —1. All three can hold simulta-
neously with a background formula ¢ = (x > —1). Instead of testing each pred-
icate separately (three solver calls), we may check p A(x =0Az > 0Nz > —1)
once. If this query is satisfiable, then all three predicates are satisfiable in a



Algorithm 3: Compact check via lazy under-approximation

Input: An SMT formula ¢ and a set of predicates P = {p1,...,pn}
Output: Whether ¢ A p; is satisfiable for each p; € P
1 W « {P}; // work-list that stores blocks still to be analysed
2 Staback < 0; // predicates delegated to fallback stage
3 while W # 0 do

4 | s pop(W), ¥ A,c,p;
5 if ¥ is satisfiable then
// no conflicts within the predicates, no need to split

6 while True do

D oA Npes D3

if @ is satisfiable then

// all remaining predicates are satisfiable
9 mark every p € s as satisfiable;
10 break
11 else
12 C + UnsatCore(®);
13 s 4 s\ C; // remove unsatisfiable part from this block
14 Stallback — Stallback U C; // add unsatisfiable part to
fallback list for later processing
15 if s =0 then
16 ‘ break
17 else
// conflicts within the predicates, need to split
18 C + UnsatCore(¥), R + s\ C;
19 if |C| =1 then
20 Stallback = Stalback U C;
21 if R # () then
22 | W+« WU{R}
23 else
24 T« 0;
25 foreach c € C do
26 | T+« Tu{ch
27 for i in range(|R|) do
// distribute residual part evenly into the |C|
subsets

28 T'[i mod |C|] < T'[¢ mod |C|] U R]i];
29 W+ WUuT,
30 if Stanback 7 0 then
31 ‘ OA(p, Staliback) ; // use Algorithm 2 or other method

32 return marked_results;

single step. More generally, the gain arises when many predicates are mutually
consistent and can therefore be verified collectively.

Algorithm 3 gives the full pseudocode. It proceeds in two phases—(i) a split
phase, which resolves internal inconsistencies among predicates, and (ii) a batch



Table 1: A step-by-step execution of the under-approximation algorithm

Iteration Current Subset Unsat Core Result Subsets Final Results

1 {po, p1,p2,p3,P4,D5} {po,ps} {{po,p1,p3},{ps,p2,pa}} {7,7,7,7,7,7
2 {pOaphpf’)} @ {{P57P2:p4}} {1717?71,?7?
3 {ps, p2, pa} 0 {} {1,1,1,1,1,1}

check phase, which tests entire groups conjunctively against the formula . Pred-
icates that cannot be resolved within these steps are finally delegated to the
over-approximation algorithm, which acts as a fallback.

1. Split phase (Lines 17—29). Starting with the entire predicate set P, the
algorithm first checks whether the conjunction A P is satisfiable without
the background formula ¢. If this internal check is unsatisfiable, the solver
returns a minimal unsatisfiable core C C P. Since predicates in C' cannot
all hold simultaneously, we partition the block:

— If |C| = 1, that singleton is delegated to the later fallback stage.

— Otherwise, each element of C' becomes its own sub-block, and the re-
maining predicates R := P\ C are redistributed among these sub-blocks
for further refinement.

This process repeats recursively until each block is either (i) jointly satisfiable
or (ii) reduced to a singleton that cannot be further split.

2. Batch check phase(Lines 5—-16). For every block s produced by the split
phase, we issue a single query to check the satisfiability of @ A\ s. If the result
is satisfiable, the entire block is marked as satisfiable. If it is unsatisfiable,
we again extract a minimal unsatisfiable core and delegate it to the later
fallback stage.

Any residual predicates that survive splitting and batch checking are dele-
gated to an over-approximation algorithm (Algorithm 2).

Ezample 2. Consider z < 8 and predicates P = {pp: x =6, p1 : 2 > 2, py:x >
3, ps:x >4, py:x>5 ps:a > 6} Applying Algorithm 3 yields the steps
shown in Table 1. All six predicates are therefore resolved in only three solver
calls, whereas a linear scan would require six.

Theorem 2. In the worst case, the split phase performs n — 1 solver calls, pro-
ducing n singleton subsets. Fach may require a separate batch check, and up
to min(k + 1,n) additional calls may be needed in the fallback phase. The total
number of solver calls is bounded by:

(n—1) (split) + n (batch check)+ min(k + 1,n) (fallback).

Theorem 3. Let n = |P| denote the number of predicates and k the number
of satisfiable predicates in P. Then Algorithm 3 performs fewer than 3n SMT
solver calls in total, and at most two in the best case.



Proof. We analyze the number of SMT solver calls incurred by each phase of the
algorithm. In the split phase, each invocation of SPLIT eliminates at least one
predicate from further consideration. Since there are n predicates in total, the
number of split calls is at most n — 1. In the batch phase, each block produced
by the split phase is checked once in conjunction with ¢. As the number of such
blocks is at most n, the number of batch calls is bounded by n. Finally, the fall-
back procedure performs over-approximate checks on the remaining predicates.
By Theorem 1, this requires at most min(k+ 1, 7n) calls. Hence, the total number
of solver calls is strictly less than (n — 1) +n + min(k + 1,n) < 3n.

If both A P and ¢ A A\ P are satisfiable, the algorithm terminates after a
single split and a single batch call, yielding a total of two SMT solver calls.

3.3 Algorithm Comparison

This subsection contrasts the three predicate—abstraction algorithms discussed
so far. Let n = | P| be the number of predicates and k (0 < k < n) the number of
satisfiable conjunctions ¢ A p;. All complexity figures count solver invocations.
Optimization Heuristics. The algorithms can benefit from standard SMT
optimizations that are orthogonal and can be combined.

— Incremental Solving (Inc): Uses push/pop to avoid reasserting ¢ for each
query. Particularly effective for linear scan and under-approximation, where
query deltas are small.

— Model Reuse (Reuse): Reuses satisfying models to classify multiple predi-
cates without additional solver calls. Especially useful in over-approximation,
where a single model may validate many predicates.

Algorithmic Trade-offs. The three algorithms differ in abstraction strategy
and performance characteristics. Table 2 summarizes these trade-offs.

— Linear Scan (LS) (Algorithm 1): The algorithm issues one query per predi-
cate. Its chief drawback is that the solver may not capitalise on similarities
between predicates, even when we use incremental solving. When n is large,
the algorithm may become prohibitively slow.

— Owver-approxzimation (OA) (Algorithm 2): This algorithm excels when only a
few predicates are satisfiable, since unsatisfiable disjunctions can eliminate
large sets at once. Its performance also depends on the “quality” of models
returned: a model that satisfies many predicates allows rapid pruning.

— Under-approzimation (UA)(Algorithm 3): Our proposed algorithm is effec-
tive when many of the predicates can be satisfied simultaneously, enabling
them to be classified in bulk. Otherwise, the overhead from splitting may re-
duce the advantage. In the worst case, it may rely on the fallback mechanism
to handle most of the predicates.

While theoretical bounds provide useful guidance, empirical performance de-
pends heavily on solver heuristics, predicate structure, and application-specific
characteristics. Given the influence of domain-specific factors on algorithm per-
formance, we provide a preliminary empirical evaluation to provide insights into
their practical behavior in the next section.



Table 2: Comparison of monadic predicate abstraction algorithms

Aspect Algorithm 1 Algorithm 2  Algorithm 3
Strategy Check each ¢ A p; Check p A\/ P Check ¢ A A\ P
Complexity O(n) O(min(k + 1,n)) O(2n — 1 + min(k + 1,n))

Table 3: Summary of evaluated algorithm variants.

Variant Name Base Algorithm Optimizations

LS-Naive Algorithm 1 None

LS-Inc Algorithm 1 Incremental solving

LS-Reuse Algorithm 1 Model reuse

LS-IncReuse Algorithm 1 Incremental solving + Model reuse
OA Algorithm 2 None

OA-Inc Algorithm 2 Incremental solving

UA(OA-Inc) Algorithm 3 None

UA-Inc(OA-Inc) Algorithm 3 Incremental solving

4 Preliminary Evaluation

Our evaluation is designed to address the following research questions that illu-
minate different aspects of the monadic predicate abstraction problem:

— RQ1: How do the base algorithms compare in terms of the runtime and the
number of solver calls (§ 4.1)7

— RQ2: To what extent do incremental solving and model reuse improve prac-
tical efficiency of the algorithms (§ 4.2)7

— RQ3: How do predicate properties, such as predicate counts and satisfiability
ratio, affect algorithm performance (§ 4.3)?

Algorithm Variants. We benchmark several variants of the algorithm, each
built on a core strategy and augmented with different optimization combinations.
Table 3 summarizes the evaluated configurations. For the LS-based algorithms,
we explore all combinations of incremental solving and model reuse, resulting
in four variants. The OA strategy inherently supports model reuse, so only the
naive and incremental variants are evaluated. For the UA-based approaches, to
avoid redundancy and highlight representative performance, we select the best-
performing variant (OA-Inc) as the fallback solver.

Benchmarks. To evaluate practical effectiveness, we use 3,987 MPA queries de-
rived from symbolic abstraction tasks over bit-vector logic. Each query contains
between 2 and 60 predicates. The benchmarks are drawn from ten real-world
programs: perlbmk, glusterd, gap, eon, wrk, tmux, openssl, vortex, darknet, and
transmission. The MPA queries were chosen to emphasize difficult cases that
stress the abstraction algorithms.

Environment. All experiments are conducted on a server equipped with dual
Intel Xeon Platinum 8176 CPUs (2.10 GHz, 28 cores each) and 500GB of RAM,



Table 4: Comparison of average runtime and solver invocation efficiency.
Algorithm Runtime (s) Time | (%) #Calls #Call | (%)

LS-Naive 1278.78 - 38.81 -

LS-Inc 235.80 81.56 38.81 0.00
LS-Reuse 272.52 78.69 11.16 71.25
LS-IncReuse 142.99 88.82 11.16 71.25
OA 275.43 78.46 8.68 77.63
OA-Inc 118.12 90.76 8.68 77.63
UA(OA-Inc) 160.14 87.48 13.69 64.72
UA-Inc(OA-Inc) 249.10 80.52 13.69 64.72

running Ubuntu 20.04 LTS. We use Z3 version 4.14.1 with a timeout of 30
seconds per query. Metrics collected include the total number of solver calls and
the wall-clock execution time.

4.1 Comparison of the Base Algorithms (RQ1)

To understand the capabilities of different algorithmic strategies, we first eval-
uate the core algorithms—LS, OA, and UA—without any additional optimiza-
tions. Table 4 summarizes the comparative results.

The LS-Naive configuration exhibits the slowest performance, with an aver-
age runtime of 1278.78 s. This degradation stems from its sequential, per-predicate
evaluation process, which results in a large number of redundant solver in-
vocations. In contrast, both OA and UA deliver substantial improvements in
efficiency and solver usage. OA and UA substantially accelerate solving com-
pared with LS-Naive, which trails far behind other algorithms and their variants.
Specifically, OA reduces runtime to 78.46% and solver calls to 77.63%, whereas
UA reduces them to 87.48% and 64.72%, respectively. Considering solver calls,
our methods also have a decrease in solver calls compared to LS, with the least
average solver calls being =~ 8. The OA family benefits from its ability to elimi-
nate infeasible regions early through over-approximation, while the UA strategy
is particularly strong on highly satisfiable instances where feasible assignments
are quickly identified.

4.2 Impact of Algorithm Optimizations (RQ2)

We next examine how incremental solving and model reuse affect algorithm
efficiency. Figure 2, Figure 1, and Table 4 present detailed comparisons between
optimized variants and their respective baselines.

Improvements for Each Algorihtm. The scatter plots in Figure 2 show that
most data points lie below the diagonal, confirming that optimized variants
nearly always outperform their corresponding baselines.

— Incremental Solving: Reusing solver states across related queries consistently
accelerates convergence and reduces redundant preprocessing. The LS fam-
ily benefits most, as the algorithm naturally fits the mode. However, the
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Fig. 2: Comparison between optimized and baseline algorithms.

technique introduces slight overhead for UA due to the internal behavior of
7Z3’s lazy SMT engine when operating in incremental mode.

— Model Reuse: Significantly decreases solver invocations by up to 71.25% for
LS. This optimization proves most valuable in domains where satisfying as-
signments can be projected across multiple predicates, particularly in sym-
bolic abstraction tasks.

— Combined Optimizations: When both optimizations are enabled, performance
improves further. The LS-IncReuse variant achieves the lowest runtime among
all LS configurations (142.99 s, and 88.8% reduction from LS-Naive). These
gains demonstrate that incremental solving and model reuse complement
each other effectively.

Comparison of Optimized Variants. Figure 1 compares the runtime per-
formance of three optimized MPA variants. The results indicate that no single
variant consistently outperforms the others; instead, performance varies across
problem instances. In the left panel, LS-IncReuse and OA-Inc exhibit com-
plementary strengths, with data points appearing on both sides of the diago-
nal—each method outperforms the other on different subsets. The middle panel,
comparing LS-IncReuse and UA(OA-Inc), shows a similar distribution, with
substantial variance across instances. The right panel, contrasting OA-Inc and
UA(OA-Inc), reveals a broader spread, suggesting greater sensitivity to instance
characteristics. Across all panels, the methods perform comparably on small in-
stances (lower-left regions), while larger instances exhibit more pronounced and
instance-specific differences.
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4.3 Impact of Problem Characteristics (RQ3)

We evaluate how two key problem characteristics—satisfiability ratio and predi-
cate count—affect solver performance. For each configuration, we report results
for the best-performing variant of each algorithm.

Satisfiability Ratio. Figure 3 shows that solver runtime increases sharply as
the satisfiability ratio approaches 1.0, indicating that near-satisfiable instances
are significantly more difficult. This trend is consistent across all algorithms, but
is most pronounced for non-incremental variants, which incur repeated solver
invocations and redundant preprocessing.

The three algorithms exhibit distinct performance characteristics across the
satisfiability spectrum. UA(OA-Inc) performs best on highly satisfiable instances
(ratio > 0.95), quickly identifying solutions with few refinement steps. OA-Inc
is most effective on unsatisfiable instances (ratio < 0.7), leveraging core-guided
refinement to efficiently eliminate infeasible regions. LS-IncReuse delivers stable
but moderate performance across all ratios, benefiting from incremental solving
but lacking the aggressive pruning strategies of the other two approaches.

Predicate Count. Figure 4 reports solver performance as a function of pred-
icate count. All algorithms exhibit sublinear scaling, though with varying sen-
sitivity. LS-IncReuse degrades most rapidly, with runtime increasing signifi-
cantly beyond 30 predicates due to linear scanning overhead. OA-Inc scales more



gracefully, benefiting from its ability to refine multiple predicates per iteration.
UA(OA-Inc) maintains near-constant performance up to 40 predicates. This ef-
ficiency arises from its use of unsatisfiable cores to eliminate large predicate sets
early in the refinement process.

5 Discussions

Applicability of MPA. Although our focus is on formulas of the form ¢ A p;,
the monadic predicate abstraction (MPA) framework generalizes to a broader
class of program analysis tasks that share a common computational structure.
In symbolic execution, MPA captures the scenario where a shared path con-
dition ¢ is conjoined with distinct branch conditions p; at a control-flow join;
each conjunction ¢ A p; must be checked for feasibility. Similarly, in invariant
inference, modern guess-and-check techniques routinely generate dozens of can-
didates. MPA enables efficient evaluation by batching these candidates.

Limitations of the Study. The benchmark suite covers only a limited subset
of MPA applications and may not reflect the full diversity of real-world usage
scenarios. The results are contingent on the performance characteristics of the Z3
SMT solver and may not generalize to other solvers with different optimization
strategies. In addition, applications that require significantly larger predicate
sets may exhibit different scalability behavior. Our evaluation is confined to the
theory of bit-vectors; extending the analysis to richer theories—such as arrays,
algebraic datatypes, or strings—may expose further limitations or opportuni-
ties. Despite these constraints, the study offers a comparative assessment of the
algorithms and their variants, providing practical guidance for their deployment
in relevant contexts.

Future Work. The MPA problem presents several avenues for further research.
On the theoretical side, tighter complexity bounds remain to be established,
potentially by exploiting structural properties of the underlying theories or
the predicate sets. From an algorithmic perspective, theory-specific optimiza-
tions—such as theory-aware lemma caching or semi-decision procedures—may
improve performance. Adaptive algorithm selection, possibly via portfolio-based
approaches, could further enhance robustness across diverse workloads. Finally,
integrating MPA more deeply with domain-specific contexts (e.g., symbolic ex-
ecution) may enable further optimization opportunities and scalability gains in
practical applications.

6 Related Work

Predicate Abstraction. Introduced by Graf and Saidi [26], predicate ab-
straction is a foundational technique in model checking and program verifica-
tion [3, 2, 1]. Although early tools implemented predicate abstraction directly,
modern verification frameworks typically employ refined variants, including lazy
abstraction with interpolants [27] and implicit predicate abstraction [8] A related



body of work investigates symbolic abstraction [11], which seeks the best over-
approximation of a formula within a given abstract domain, such as finite-height
domains [11], template linear domains [28, 24, 12], polyhedral domains [29], In
contrast, the monadic predicate abstraction focuses specifically on determining
predicate satisfiability in conjunction with a fixed formula, which can serve as a
low-level primitive in the design and implementation of other algorithms.

Constraint Caching for SMT. SMT solvers are integral to modern verifica-
tion and synthesis tools, enabling reasoning over theories such as bit-vectors,
arrays, and linear arithmetic. They are widely used in various applications, such
as symbolic execution [30, 31|, software model checking [32-35], program syn-
thesis [36, 37], automated repair [38, 39], and refinement type systems [40, 41].
To reduce solver overhead, prior work has explored caching mechanisms to avoid
redundant queries [42, 14, 15]. KLEE [43] caches path conditions and counterex-
amples in symbolic execution, while Green [13] caches and simplifies queries over
linear arithmetic. These systems are designed for general-purpose reuse across
diverse queries, often arising from different paths or time frames. In contrast, our
setting is more structured. We hypothesize that combining client-side optimiza-
tions, such as canonicalization, can lead to further performance improvements.

Consequence Finding. Consequence finding aims to compute logical entail-
ments of a formula and is widely studied in deduction, such as computing
prime implicants [44]. In the context of circuit verification, equality inference
for Boolean functions [45] is a well-established technique; identifying equiva-
lent sub-circuits can significantly reduce the complexity of equivalence check-
ing. In satisfiability modulo theories (SMT), congruence closure is a standard
method for inferring equalities from conjunctions involving uninterpreted func-
tions [46]. In program analysis, consequence finding manifests in various forms,
including quantifier elimination [47, 48, 47, 49], predicate abstraction, interpo-
lation [50, 51, 27, 50, 52], and implied equalities [53]. The monadic predicative
abstraction can be applied to identify consequences of a fixed formula ¢ with
respect to a set of candidate predicates. This restricted form of consequence
finding enables localized reasoning within a fixed context.

7 Conclusion

Monadic predicate abstraction (MPA) is a recurring computational pattern that
arises in various applications, yet it has remained hidden in plain sight—buried
in implementation details rather than celebrated as the fundamental primitive
it truly is. This paper formalizes MPA, introduces a new algorithm, and empir-
ically compares three algorithmic strategies, highlighting their trade-offs across
benchmarks drawn from symbolic abstraction tasks. We advocate for the eleva-
tion of MPA to a first-class abstraction in the design space of program analyses,
enabling systematic exploration of algorithmic design choices and facilitating
structure-aware optimizations.
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